Work in progress...
Built with blockbuilder.org
license: mit |
Work in progress...
Built with blockbuilder.org
country | latitude | longitude | name | |
---|---|---|---|---|
AD | 42.546245 | 1.601554 | Andorra | |
AE | 23.424076 | 53.847818 | United Arab Emirates | |
AF | 33.93911 | 67.709953 | Afghanistan | |
AG | 17.060816 | -61.796428 | Antigua and Barbuda | |
AI | 18.220554 | -63.068615 | Anguilla | |
AL | 41.153332 | 20.168331 | Albania | |
AM | 40.069099 | 45.038189 | Armenia | |
AN | 12.226079 | -69.060087 | Netherlands Antilles | |
AO | -11.202692 | 17.873887 | Angola | |
AQ | -75.250973 | -0.071389 | Antarctica | |
AR | -38.416097 | -63.616672 | Argentina | |
AS | -14.270972 | -170.132217 | American Samoa | |
AT | 47.516231 | 14.550072 | Austria | |
AU | -25.274398 | 133.775136 | Australia | |
AW | 12.52111 | -69.968338 | Aruba | |
AZ | 40.143105 | 47.576927 | Azerbaijan | |
BA | 43.915886 | 17.679076 | Bosnia and Herzegovina | |
BB | 13.193887 | -59.543198 | Barbados | |
BD | 23.684994 | 90.356331 | Bangladesh | |
BE | 50.503887 | 4.469936 | Belgium | |
BF | 12.238333 | -1.561593 | Burkina Faso | |
BG | 42.733883 | 25.48583 | Bulgaria | |
BH | 25.930414 | 50.637772 | Bahrain | |
BI | -3.373056 | 29.918886 | Burundi | |
BJ | 9.30769 | 2.315834 | Benin | |
BM | 32.321384 | -64.75737 | Bermuda | |
BN | 4.535277 | 114.727669 | Brunei | |
BO | -16.290154 | -63.588653 | Bolivia | |
BR | -14.235004 | -51.92528 | Brazil | |
BS | 25.03428 | -77.39628 | Bahamas | |
BT | 27.514162 | 90.433601 | Bhutan | |
BV | -54.423199 | 3.413194 | Bouvet Island | |
BW | -22.328474 | 24.684866 | Botswana | |
BY | 53.709807 | 27.953389 | Belarus | |
BZ | 17.189877 | -88.49765 | Belize | |
CA | 56.130366 | -106.346771 | Canada | |
CC | -12.164165 | 96.870956 | Cocos [Keeling] Islands | |
CD | -4.038333 | 21.758664 | Congo [DRC] | |
CF | 6.611111 | 20.939444 | Central African Republic | |
CG | -0.228021 | 15.827659 | Congo [Republic] | |
CH | 46.818188 | 8.227512 | Switzerland | |
CI | 7.539989 | -5.54708 | Côte d'Ivoire | |
CK | -21.236736 | -159.777671 | Cook Islands | |
CL | -35.675147 | -71.542969 | Chile | |
CM | 7.369722 | 12.354722 | Cameroon | |
CN | 35.86166 | 104.195397 | China | |
CO | 4.570868 | -74.297333 | Colombia | |
CR | 9.748917 | -83.753428 | Costa Rica | |
CU | 21.521757 | -77.781167 | Cuba | |
CV | 16.002082 | -24.013197 | Cape Verde | |
CX | -10.447525 | 105.690449 | Christmas Island | |
CY | 35.126413 | 33.429859 | Cyprus | |
CZ | 49.817492 | 15.472962 | Czech Republic | |
DE | 51.165691 | 10.451526 | Germany | |
DJ | 11.825138 | 42.590275 | Djibouti | |
DK | 56.26392 | 9.501785 | Denmark | |
DM | 15.414999 | -61.370976 | Dominica | |
DO | 18.735693 | -70.162651 | Dominican Republic | |
DZ | 28.033886 | 1.659626 | Algeria | |
EC | -1.831239 | -78.183406 | Ecuador | |
EE | 58.595272 | 25.013607 | Estonia | |
EG | 26.820553 | 30.802498 | Egypt | |
EH | 24.215527 | -12.885834 | Western Sahara | |
ER | 15.179384 | 39.782334 | Eritrea | |
ES | 40.463667 | -3.74922 | Spain | |
ET | 9.145 | 40.489673 | Ethiopia | |
FI | 61.92411 | 25.748151 | Finland | |
FJ | -16.578193 | 179.414413 | Fiji | |
FK | -51.796253 | -59.523613 | Falkland Islands [Islas Malvinas] | |
FM | 7.425554 | 150.550812 | Micronesia | |
FO | 61.892635 | -6.911806 | Faroe Islands | |
FR | 46.227638 | 2.213749 | France | |
GA | -0.803689 | 11.609444 | Gabon | |
GB | 55.378051 | -3.435973 | United Kingdom | |
GD | 12.262776 | -61.604171 | Grenada | |
GE | 42.315407 | 43.356892 | Georgia | |
GF | 3.933889 | -53.125782 | French Guiana | |
GG | 49.465691 | -2.585278 | Guernsey | |
GH | 7.946527 | -1.023194 | Ghana | |
GI | 36.137741 | -5.345374 | Gibraltar | |
GL | 71.706936 | -42.604303 | Greenland | |
GM | 13.443182 | -15.310139 | Gambia | |
GN | 9.945587 | -9.696645 | Guinea | |
GP | 16.995971 | -62.067641 | Guadeloupe | |
GQ | 1.650801 | 10.267895 | Equatorial Guinea | |
GR | 39.074208 | 21.824312 | Greece | |
GS | -54.429579 | -36.587909 | South Georgia and the South Sandwich Islands | |
GT | 15.783471 | -90.230759 | Guatemala | |
GU | 13.444304 | 144.793731 | Guam | |
GW | 11.803749 | -15.180413 | Guinea-Bissau | |
GY | 4.860416 | -58.93018 | Guyana | |
GZ | 31.354676 | 34.308825 | Gaza Strip | |
HK | 22.396428 | 114.109497 | Hong Kong | |
HM | -53.08181 | 73.504158 | Heard Island and McDonald Islands | |
HN | 15.199999 | -86.241905 | Honduras | |
HR | 45.1 | 15.2 | Croatia | |
HT | 18.971187 | -72.285215 | Haiti | |
HU | 47.162494 | 19.503304 | Hungary | |
ID | -0.789275 | 113.921327 | Indonesia | |
IE | 53.41291 | -8.24389 | Ireland | |
IL | 31.046051 | 34.851612 | Israel | |
IM | 54.236107 | -4.548056 | Isle of Man | |
IN | 20.593684 | 78.96288 | India | |
IO | -6.343194 | 71.876519 | British Indian Ocean Territory | |
IQ | 33.223191 | 43.679291 | Iraq | |
IR | 32.427908 | 53.688046 | Iran | |
IS | 64.963051 | -19.020835 | Iceland | |
IT | 41.87194 | 12.56738 | Italy | |
JE | 49.214439 | -2.13125 | Jersey | |
JM | 18.109581 | -77.297508 | Jamaica | |
JO | 30.585164 | 36.238414 | Jordan | |
JP | 36.204824 | 138.252924 | Japan | |
KE | -0.023559 | 37.906193 | Kenya | |
KG | 41.20438 | 74.766098 | Kyrgyzstan | |
KH | 12.565679 | 104.990963 | Cambodia | |
KI | -3.370417 | -168.734039 | Kiribati | |
KM | -11.875001 | 43.872219 | Comoros | |
KN | 17.357822 | -62.782998 | Saint Kitts and Nevis | |
KP | 40.339852 | 127.510093 | North Korea | |
KR | 35.907757 | 127.766922 | South Korea | |
KW | 29.31166 | 47.481766 | Kuwait | |
KY | 19.513469 | -80.566956 | Cayman Islands | |
KZ | 48.019573 | 66.923684 | Kazakhstan | |
LA | 19.85627 | 102.495496 | Laos | |
LB | 33.854721 | 35.862285 | Lebanon | |
LC | 13.909444 | -60.978893 | Saint Lucia | |
LI | 47.166 | 9.555373 | Liechtenstein | |
LK | 7.873054 | 80.771797 | Sri Lanka | |
LR | 6.428055 | -9.429499 | Liberia | |
LS | -29.609988 | 28.233608 | Lesotho | |
LT | 55.169438 | 23.881275 | Lithuania | |
LU | 49.815273 | 6.129583 | Luxembourg | |
LV | 56.879635 | 24.603189 | Latvia | |
LY | 26.3351 | 17.228331 | Libya | |
MA | 31.791702 | -7.09262 | Morocco | |
MC | 43.750298 | 7.412841 | Monaco | |
MD | 47.411631 | 28.369885 | Moldova | |
ME | 42.708678 | 19.37439 | Montenegro | |
MG | -18.766947 | 46.869107 | Madagascar | |
MH | 7.131474 | 171.184478 | Marshall Islands | |
MK | 41.608635 | 21.745275 | Macedonia [FYROM] | |
ML | 17.570692 | -3.996166 | Mali | |
MM | 21.913965 | 95.956223 | Myanmar [Burma] | |
MN | 46.862496 | 103.846656 | Mongolia | |
MO | 22.198745 | 113.543873 | Macau | |
MP | 17.33083 | 145.38469 | Northern Mariana Islands | |
MQ | 14.641528 | -61.024174 | Martinique | |
MR | 21.00789 | -10.940835 | Mauritania | |
MS | 16.742498 | -62.187366 | Montserrat | |
MT | 35.937496 | 14.375416 | Malta | |
MU | -20.348404 | 57.552152 | Mauritius | |
MV | 3.202778 | 73.22068 | Maldives | |
MW | -13.254308 | 34.301525 | Malawi | |
MX | 23.634501 | -102.552784 | Mexico | |
MY | 4.210484 | 101.975766 | Malaysia | |
MZ | -18.665695 | 35.529562 | Mozambique | |
NA | -22.95764 | 18.49041 | Namibia | |
NC | -20.904305 | 165.618042 | New Caledonia | |
NE | 17.607789 | 8.081666 | Niger | |
NF | -29.040835 | 167.954712 | Norfolk Island | |
NG | 9.081999 | 8.675277 | Nigeria | |
NI | 12.865416 | -85.207229 | Nicaragua | |
NL | 52.132633 | 5.291266 | Netherlands | |
NO | 60.472024 | 8.468946 | Norway | |
NP | 28.394857 | 84.124008 | Nepal | |
NR | -0.522778 | 166.931503 | Nauru | |
NU | -19.054445 | -169.867233 | Niue | |
NZ | -40.900557 | 174.885971 | New Zealand | |
OM | 21.512583 | 55.923255 | Oman | |
PA | 8.537981 | -80.782127 | Panama | |
PE | -9.189967 | -75.015152 | Peru | |
PF | -17.679742 | -149.406843 | French Polynesia | |
PG | -6.314993 | 143.95555 | Papua New Guinea | |
PH | 12.879721 | 121.774017 | Philippines | |
PK | 30.375321 | 69.345116 | Pakistan | |
PL | 51.919438 | 19.145136 | Poland | |
PM | 46.941936 | -56.27111 | Saint Pierre and Miquelon | |
PN | -24.703615 | -127.439308 | Pitcairn Islands | |
PR | 18.220833 | -66.590149 | Puerto Rico | |
PS | 31.952162 | 35.233154 | Palestinian Territories | |
PT | 39.399872 | -8.224454 | Portugal | |
PW | 7.51498 | 134.58252 | Palau | |
PY | -23.442503 | -58.443832 | Paraguay | |
QA | 25.354826 | 51.183884 | Qatar | |
RE | -21.115141 | 55.536384 | Réunion | |
RO | 45.943161 | 24.96676 | Romania | |
RS | 44.016521 | 21.005859 | Serbia | |
RU | 61.52401 | 105.318756 | Russia | |
RW | -1.940278 | 29.873888 | Rwanda | |
SA | 23.885942 | 45.079162 | Saudi Arabia | |
SB | -9.64571 | 160.156194 | Solomon Islands | |
SC | -4.679574 | 55.491977 | Seychelles | |
SD | 12.862807 | 30.217636 | Sudan | |
SE | 60.128161 | 18.643501 | Sweden | |
SG | 1.352083 | 103.819836 | Singapore | |
SH | -24.143474 | -10.030696 | Saint Helena | |
SI | 46.151241 | 14.995463 | Slovenia | |
SJ | 77.553604 | 23.670272 | Svalbard and Jan Mayen | |
SK | 48.669026 | 19.699024 | Slovakia | |
SL | 8.460555 | -11.779889 | Sierra Leone | |
SM | 43.94236 | 12.457777 | San Marino | |
SN | 14.497401 | -14.452362 | Senegal | |
SO | 5.152149 | 46.199616 | Somalia | |
SR | 3.919305 | -56.027783 | Suriname | |
ST | 0.18636 | 6.613081 | São Tomé and Príncipe | |
SV | 13.794185 | -88.89653 | El Salvador | |
SY | 34.802075 | 38.996815 | Syria | |
SZ | -26.522503 | 31.465866 | Swaziland | |
TC | 21.694025 | -71.797928 | Turks and Caicos Islands | |
TD | 15.454166 | 18.732207 | Chad | |
TF | -49.280366 | 69.348557 | French Southern Territories | |
TG | 8.619543 | 0.824782 | Togo | |
TH | 15.870032 | 100.992541 | Thailand | |
TJ | 38.861034 | 71.276093 | Tajikistan | |
TK | -8.967363 | -171.855881 | Tokelau | |
TL | -8.874217 | 125.727539 | Timor-Leste | |
TM | 38.969719 | 59.556278 | Turkmenistan | |
TN | 33.886917 | 9.537499 | Tunisia | |
TO | -21.178986 | -175.198242 | Tonga | |
TR | 38.963745 | 35.243322 | Turkey | |
TT | 10.691803 | -61.222503 | Trinidad and Tobago | |
TV | -7.109535 | 177.64933 | Tuvalu | |
TW | 23.69781 | 120.960515 | Taiwan | |
TZ | -6.369028 | 34.888822 | Tanzania | |
UA | 48.379433 | 31.16558 | Ukraine | |
UG | 1.373333 | 32.290275 | Uganda | |
UM | U.S. Minor Outlying Islands | |||
US | 37.09024 | -95.712891 | United States | |
UY | -32.522779 | -55.765835 | Uruguay | |
UZ | 41.377491 | 64.585262 | Uzbekistan | |
VA | 41.902916 | 12.453389 | Vatican City | |
VC | 12.984305 | -61.287228 | Saint Vincent and the Grenadines | |
VE | 6.42375 | -66.58973 | Venezuela | |
VG | 18.420695 | -64.639968 | British Virgin Islands | |
VI | 18.335765 | -64.896335 | U.S. Virgin Islands | |
VN | 14.058324 | 108.277199 | Vietnam | |
VU | -15.376706 | 166.959158 | Vanuatu | |
WF | -13.768752 | -177.156097 | Wallis and Futuna | |
WS | -13.759029 | -172.104629 | Samoa | |
XK | 42.602636 | 20.902977 | Kosovo | |
YE | 15.552727 | 48.516388 | Yemen | |
YT | -12.8275 | 45.166244 | Mayotte | |
ZA | -30.559482 | 22.937506 | South Africa | |
ZM | -13.133897 | 27.849332 | Zambia | |
ZW | -19.015438 | 29.154857 | Zimbabwe |
zb_id | valence | continent | country | strategy | theme | variable | strength | |
---|---|---|---|---|---|---|---|---|
1.1.1 | 0 | Africa | Gabon | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.1.2 | 1 | Africa | Gabon | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.1.3 | 1 | Africa | Gabon | FSC | ENV | Collateral damage | Direct correlation | |
1.1.4 | 1 | Africa | Gabon | FSC | ENV | Ground disturbance | Direct correlation | |
1.1.5 | 1 | Africa | Gabon | FSC | ECON | Harvest efficiency | Direct correlation | |
1.1.6 | 1 | Africa | Gabon | FSC | ENV | Road and skid trail density | Direct correlation | |
1.1.7 | 1 | Africa | Gabon | FSC | ECON | Timber stock (sustainability of income) | Direct correlation | |
1.1.8 | 0 | Africa | Gabon | FSC | ENV | Tree diversity | Direct correlation | |
1.10.1 | 1 | Global | Global | FSC | ENV | Deforestation, fragmentation and degradation | Direct correlation | |
1.11.1 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.11.2 | 1 | South and Central America | Brazil | FSC | ENV | Road and skid trail density | Direct correlation | |
1.12.1 | 1 | Asia | Malaysia | FSC | ENV | Animal diversity | Direct correlation | |
1.12.2 | 1 | Asia | Malaysia | FSC | ENV | Animal diversity | Direct correlation | |
1.13.1 | 1 | Asia | Indonesia | FSC | ENV | Collateral damage | Direct correlation | |
1.13.2 | 1 | Asia | Indonesia | FSC | ENV | Road and skid trail density | Direct correlation | |
1.14.1 | 1 | South and Central America | Brazil, Venezuela, Suriname, Paraguay | FSC | ENV | Ground disturbance | Direct correlation | |
1.16.1 | 1 | South and Central America | Brazil | FSC | ECON | Profit | Direct correlation | |
1.17.1 | -1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.17.2 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.17.3 | -1 | South and Central America | Brazil | FSC | ENV | Collateral damage | Direct correlation | |
1.17.4 | 1 | South and Central America | Brazil | FSC | ENV | Ground disturbance | Direct correlation | |
1.17.5 | -1 | South and Central America | Brazil | FSC | ECON | Pre-logging costs | Direct correlation | |
1.17.6 | -1 | South and Central America | Brazil | FSC | ECON | Skidding cost | Direct correlation | |
1.17.7 | 1 | South and Central America | Brazil | FSC | ECON | Worker productivity | Direct correlation | |
1.18.1 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.18.2 | 1 | South and Central America | Brazil | FSC | ENV | Ground disturbance | Direct correlation | |
1.19.1 | -1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.10 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.11 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.12 | 0 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.13 | 0 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.2 | 0 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.3 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.4 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.5 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.6 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.7 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.8 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.19.9 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.20.1 | 1 | Asia | Indonesia | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.20.2 | 1 | Asia | Indonesia | FSC | ENV | Collateral damage | Direct correlation | |
1.20.3 | 0 | Asia | Indonesia | FSC | ENV | Collateral damage | Direct correlation | |
1.20.4 | 0 | Asia | Indonesia | FSC | ENV | Collateral damage | Direct correlation | |
1.20.5 | 1 | Asia | Indonesia | FSC | ENV | Road and skid trail density | Direct correlation | |
1.21.1 | 0 | Africa | Cameroon | FSC | ENV | Collateral damage | Direct correlation | |
1.22.1 | 1 | Asia | Malaysia | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.22.2 | 1 | Asia | Malaysia | FSC | ENV | Collateral damage | Direct correlation | |
1.23.1 | 1 | Asia | Malaysia | FSC | ENV | Collateral damage | Direct correlation | |
1.23.2 | 1 | Asia | Malaysia | FSC | ENV | Collateral damage | Direct correlation | |
1.23.3 | 1 | Asia | Malaysia | FSC | ENV | Ground disturbance | Direct correlation | |
1.23.4 | -1 | Asia | Malaysia | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.23.5 | -1 | Asia | Malaysia | FSC | ECON | Worker productivity | Direct correlation | |
1.26.1 | -1 | Pan-tropical | Pan-tropical (countries not available) | FSC | ECON | Profit | Unknown | |
1.27.1 | -1 | South and Central America | Brazil | FSC | SOC | Access to land | Direct correlation | |
1.27.2 | 1 | South and Central America | Brazil | FSC | SOC | Awareness, empowerment, participation | Direct correlation | |
1.27.3 | 1 | South and Central America | Brazil | FSC | SOC | Compliance with laws and regulations | Direct correlation | |
1.27.4 | 0 | South and Central America | Brazil | FSC | SOC | Direct economic benefits | Direct correlation | |
1.27.5 | 1 | South and Central America | Brazil | FSC | SOC | Infrastructure and Institutions | Direct correlation | |
1.27.6 | 1 | South and Central America | Brazil | FSC | SOC | Living and working conditions of employees | Direct correlation | |
1.28.1 | 1 | Pan-tropical | Bolivia, Brazil, French Guiana, Guyana, Malaysia, Republic of Congo, Uganda, Venezuela | FSC | ENV | Animal diversity | Direct correlation | |
1.29.1 | 1 | Pan-tropical | Pan-tropical (countries not available) | FSC | ENV | Animal diversity | Direct correlation | |
1.3.1 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Access to land | Case study (loose correlation) | |
1.3.10 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Living and working conditions of employees | Case study (loose correlation) | |
1.3.11 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Living and working conditions of employees | Case study (loose correlation) | |
1.3.12 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Living and working conditions of employees | Case study (loose correlation) | |
1.3.2 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | ENV | Deforestation, fragmentation and degradation | Case study (loose correlation) | |
1.3.3 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | ENV | Illegal hunting, logging, mining | Case study (loose correlation) | |
1.3.4 | 0 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Equality, equity, less marginalization | Case study (loose correlation) | |
1.3.5 | 1 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Infrastructure and Institutions | Case study (loose correlation) | |
1.3.6 | 1 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Infrastructure and Institutions | Case study (loose correlation) | |
1.3.7 | 1 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Community wellbeing and livelihoods | Case study (loose correlation) | |
1.3.8 | 1 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Living and working conditions of employees | Case study (loose correlation) | |
1.3.9 | 1 | Africa | Cameroon, Gabon, Republic of Congo | FSC | SOC | Living and working conditions of employees | Case study (loose correlation) | |
1.30.1 | 1 | Asia | Malaysia | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.30.2 | 1 | Asia | Malaysia | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.30.3 | 1 | Asia | Malaysia | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.30.4 | 1 | Asia | Malaysia | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.32.1 | 1 | Asia | Malaysia | FSC | ECON | Price premium | Direct correlation | |
1.33.1 | 1 | South and Central America | Brazil | FSC | SOC | Conflict | Direct correlation | |
1.33.2 | 1 | South and Central America | Brazil | FSC | ECON | Management and administration | Direct correlation | |
1.33.3 | 0 | South and Central America | Brazil | FSC | ECON | Management and administration | Direct correlation | |
1.33.4 | 1 | South and Central America | Brazil | FSC | ECON | Market access | Direct correlation | |
1.33.5 | 0 | South and Central America | Brazil | FSC | ECON | Price premium | Direct correlation | |
1.33.6 | 0 | South and Central America | Brazil | FSC | ECON | Profit | Direct correlation | |
1.35.1 | -1 | South and Central America | Guyana | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.35.10 | -1 | South and Central America | Guyana | FSC | ECON | Worker productivity | Direct correlation | |
1.35.2 | -1 | South and Central America | Guyana | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.35.3 | 1 | South and Central America | Guyana | FSC | ENV | Collateral damage | Direct correlation | |
1.35.4 | 1 | South and Central America | Guyana | FSC | ENV | Ground disturbance | Direct correlation | |
1.35.5 | -1 | South and Central America | Guyana | FSC | ECON | Pre-logging costs | Direct correlation | |
1.35.6 | -1 | South and Central America | Guyana | FSC | ECON | Profit | Direct correlation | |
1.35.7 | 1 | South and Central America | Guyana | FSC | ECON | Skidding cost | Direct correlation | |
1.35.8 | -1 | South and Central America | Guyana | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.35.9 | 1 | South and Central America | Brazil | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.36.1 | 1 | South and Central America | Ecuador | FSC | ENV | Ground disturbance | Direct correlation | |
1.36.2 | -1 | South and Central America | Ecuador | FSC | ECON | Pre-logging costs | Direct correlation | |
1.36.3 | -1 | South and Central America | Ecuador | FSC | ECON | Skidding cost | Direct correlation | |
1.36.4 | -1 | South and Central America | Ecuador | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.36.5 | -1 | South and Central America | Ecuador | FSC | ECON | Worker productivity | Direct correlation | |
1.37.1 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.37.2 | 0 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.37.3 | 0 | South and Central America | Brazil | FSC | ENV | Collateral damage | Direct correlation | |
1.37.4 | 1 | South and Central America | Brazil | FSC | ENV | Ground disturbance | Direct correlation | |
1.37.5 | -1 | South and Central America | Brazil | FSC | ECON | Pre-logging costs | Direct correlation | |
1.37.6 | 1 | South and Central America | Brazil | FSC | ECON | Profit | Direct correlation | |
1.37.7 | 1 | South and Central America | Brazil | FSC | ECON | Skidding cost | Direct correlation | |
1.37.8 | -1 | South and Central America | Brazil | FSC | ECON | Worker productivity | Direct correlation | |
1.38.1 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.38.10 | -1 | South and Central America | Brazil | FSC | ECON | Pre-logging costs | Direct correlation | |
1.38.11 | 1 | South and Central America | Brazil | FSC | ECON | Profit | Direct correlation | |
1.38.12 | 1 | South and Central America | Brazil | FSC | ECON | Profit | Direct correlation | |
1.38.13 | 1 | South and Central America | Brazil | FSC | ECON | Skidding cost | Direct correlation | |
1.38.14 | 1 | South and Central America | Brazil | FSC | ECON | Worker productivity | Direct correlation | |
1.38.15 | 1 | South and Central America | Brazil | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.38.16 | 1 | South and Central America | Brazil | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.38.17 | -1 | South and Central America | Brazil | FSC | ECON | Worker productivity | Direct correlation | |
1.38.18 | 1 | South and Central America | Brazil | FSC | ECON | Skidding cost | Direct correlation | |
1.38.2 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.38.3 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.38.4 | 1 | South and Central America | Brazil | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.38.5 | 1 | South and Central America | Brazil | FSC | ENV | Collateral damage | Direct correlation | |
1.38.6 | 1 | South and Central America | Brazil | FSC | ENV | Collateral damage | Direct correlation | |
1.38.7 | 1 | South and Central America | Brazil | FSC | ENV | Ground disturbance | Direct correlation | |
1.38.8 | 1 | South and Central America | Brazil | FSC | ENV | Ground disturbance | Direct correlation | |
1.38.9 | -1 | South and Central America | Brazil | FSC | ECON | Pre-logging costs | Direct correlation | |
1.39.1 | 1 | South and Central America | Guyana | FSC | ECON | Pre-logging costs | Direct correlation | |
1.39.2 | 1 | South and Central America | Guyana | FSC | ECON | Skidding cost | Direct correlation | |
1.39.3 | 1 | South and Central America | Guyana | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.40.1 | 0 | Pan-tropical | Malaysia, Ethiopia, Indonesia, Papua New Guinea, Brazil, Bolivia, Cameroon, Cambodia, Gabon, Guyana, Costa Rica, Belize, French Guiana, Central Africal Republic, Nigeria, Ghana, Laos | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.40.2 | 1 | Pan-tropical | Pan-tropical (countries not available) | FSC | ENV | Collateral damage | Direct correlation | |
1.40.3 | 0 | Pan-tropical | Pan-tropical (countries not available) | FSC | ENV | Tree diversity | Direct correlation | |
1.42.1 | 1 | Asia | Indonesia | FSC | ENV | Canopy loss, gap size | Direct correlation | |
1.42.10 | -1 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.42.11 | -1 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.42.12 | 1 | Asia | Indonesia | FSC | ECON | Profit | Direct correlation | |
1.42.13 | 1 | South and Central America | Brazil | FSC | ECON | Skidding costs | Direct correlation | |
1.42.2 | 1 | South and Central America | Brazil | FSC | SOC | Jobs | Direct correlation | |
1.42.3 | 1 | Asia | Indonesia | FSC | SOC | Jobs | Direct correlation | |
1.42.4 | 0 | Asia | Malaysia | FSC | SOC | Jobs | Direct correlation | |
1.42.5 | 1 | Asia | Indonesia | FSC | ECON | Management and administration | Direct correlation | |
1.42.6 | 1 | Asia | Malaysia | FSC | ECON | Market access | Direct correlation | |
1.42.7 | 1 | South and Central America | Brazil | FSC | ECON | Price premium | Direct correlation | |
1.42.8 | 0 | Asia | Malaysia | FSC | ECON | Price premium | Direct correlation | |
1.42.9 | -1 | South and Central America | Brazil | FSC | ECON | Profit | Direct correlation | |
1.43.1 | 1 | Asia | Indonesia | FSC | SOC | Community wellbeing and livelihoods | Causal | |
1.43.10 | 0 | Asia | Indonesia | FSC | SOC | Infrastructure and Institutions | Causal | |
1.43.2 | 1 | Asia | Indonesia | FSC | SOC | Direct economic benefits | Causal | |
1.43.3 | 1 | Asia | Indonesia | FSC | SOC | Community wellbeing and livelihoods | Causal | |
1.43.4 | 1 | Asia | Indonesia | FSC | SOC | Community wellbeing and livelihoods | Causal | |
1.43.5 | 1 | Asia | Indonesia | FSC | SOC | Community wellbeing and livelihoods | Causal | |
1.43.6 | 0 | Asia | Indonesia | FSC | ENV | Water regulation, erosion prevention | Causal | |
1.43.7 | 1 | Asia | Indonesia | FSC | ENV | Deforestation, fragmentation and degradation | Causal | |
1.43.8 | 0 | Asia | Indonesia | FSC | ENV | Deforestation, fragmentation and degradation | Causal | |
1.43.9 | 0 | Asia | Indonesia | FSC | SOC | Infrastructure and Institutions | Causal | |
1.44.1 | 1 | Asia | Malaysia | FSC | ENV | Collateral damage | Direct correlation | |
1.44.10 | -1 | Asia | Malaysia | FSC | ECON | Worker productivity | Direct correlation | |
1.44.2 | 1 | Asia | Malaysia | FSC | SOC | Compliance with harvest regulations | Direct correlation | |
1.44.3 | -1 | Asia | Malaysia | FSC | ECON | Pre-logging costs | Direct correlation | |
1.44.4 | -1 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.44.5 | -1 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.44.6 | 1 | Asia | Malaysia | FSC | ENV | Road and skid trail density | Direct correlation | |
1.44.7 | 1 | Asia | Malaysia | FSC | ENV | Set asides and buffer zones | Direct correlation | |
1.44.8 | 1 | Asia | Malaysia | FSC | ECON | Timber stock (sustainability of income) | Direct correlation | |
1.44.9 | -1 | Asia | Malaysia | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.45.1 | -1 | Asia | Indonesia | FSC | ECON | Profit | Direct correlation | |
1.45.2 | 0 | Asia | Indonesia | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.46.1 | -1 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.46.2 | -1 | Asia | Malaysia | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.47.1 | 0 | Africa | Gabon | FSC | ECON | Profit | Direct correlation | |
1.47.2 | -1 | Africa | Gabon | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.48.1 | -1 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.48.2 | 0 | Asia | Malaysia | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.49.1 | 0 | Asia | Malaysia | FSC | ECON | Profit | Direct correlation | |
1.49.2 | 1 | Asia | Malaysia | FSC | ECON | Total cost of logging operations | Direct correlation | |
1.5.1 | 1 | South and Central America | Bolivia | FSC | ECON | Price premium | Direct correlation | |
1.51.1 | 0 | South and Central America | Mexico | FSC | ENV | Deforestation, fragmentation and degradation | Causal | |
1.52.1 | 1 | Pan-tropical | Belize, Bolivia, Brazil, Ghana, Malaysia, Costa Rica, Ecuador, India, Indonesia, Malaysia, | FSC | ENV | Animal diversity | Direct correlation | |
1.52.2 | 1 | Pan-tropical | Belize, Bolivia, Brazil, Ghana, Malaysia, Costa Rica, Ecuador, India, Indonesia, Malaysia, | FSC | ENV | Animal diversity | Direct correlation | |
1.52.3 | 1 | Pan-tropical | Belize, Bolivia, Brazil, Ghana, Malaysia, Costa Rica, Ecuador, India, Indonesia, Malaysia, | FSC | ENV | Animal diversity | Direct correlation | |
1.52.4 | 1 | Pan-tropical | Belize, Bolivia, Brazil, Ghana, Malaysia, Costa Rica, Ecuador, India, Indonesia, Malaysia, | FSC | ENV | Tree diversity | Direct correlation | |
1.52.5 | 0 | Pan-tropical | Belize, Bolivia, Brazil, Ghana, Malaysia, Costa Rica, Ecuador, India, Indonesia, Malaysia, | FSC | ENV | Animal diversity | Direct correlation | |
1.7.1 | 1 | Asia | Malaysia | FSC | ENV | Animal diversity | Direct correlation | |
1.7.2 | 1 | Asia | Malaysia | FSC | ENV | Carbon stock, emissions | Direct correlation | |
1.7.3 | 1 | Asia | Malaysia | FSC | ENV | Set asides and buffer zones | Direct correlation |
<!DOCTYPE html> | |
<head> | |
<meta charset="utf-8"> | |
<script src="https://d3js.org/d3.v4.min.js"></script> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.17.4/lodash.min.js"></script> | |
<style> | |
body {margin:0; padding: 0;} | |
.deleted {color: #ff0000;} | |
div.container { | |
width: 1200px; height: 500px; | |
position:relative; | |
} | |
div.row { | |
position: absolute; | |
width: 100%; | |
height: 60px; | |
overflow: hidden; | |
} | |
div.cell { | |
position: absolute; | |
width: 70px; | |
height: 56px; | |
text-align:center; | |
line-height: 56px; | |
} | |
div.cell.chart { | |
width:1130px; | |
} | |
div.chartcells { | |
position:absolute; | |
width: 19px; height: 19px; | |
} | |
div.chartcells.minus { | |
background: #D7067C; | |
} | |
div.chartcells.plus { | |
background: #309223; | |
} | |
div.chartcells.neutral { | |
background: #FACB57; | |
} | |
div.chartcells.weak { | |
opacity: 0.5; | |
} | |
</style> | |
</head> | |
<body> | |
<script src="https://d3js.org/d3-queue.v3.min.js"></script> | |
<svg width="960" height="500"></svg> | |
<script> | |
var countriesKeyed; | |
var dataByTheme; | |
var dataByVariable; | |
var margins = { top: 20, left: 75, bottom: 20, right: 20 }; | |
var svg = d3.select('svg'), | |
width = +svg.attr('width') - margins.left - margins.right, | |
height = +svg.attr('height') - margins.top - margins.bottom; | |
var squareWidth; // to do: set the square width based on chart width & number of data points | |
var yScale = d3.scaleOrdinal().range([height, 0]); | |
d3.queue() | |
.defer(d3.csv, 'countries.csv') | |
.defer(d3.csv, 'data.csv') | |
.await(main); | |
function main(error, countries, data) { | |
if (error) throw error; | |
// parse country data | |
countries = countries.map(function(d) { | |
return { | |
lat: +d.latitude, | |
lon: +d.longitude, | |
abrev: d.country, | |
count: 0, | |
name: d.name | |
} | |
}); | |
// parse our valence value into a number | |
data.forEach(function(d) { | |
d.valence = +d.valence; | |
d.variable = d.variable.split(',').map(v => v.trim()) | |
}) | |
// create a d3 map, not the same as Array.prototype.map | |
countriesKeyed = d3.map(countries, function(d) { | |
return d.name; | |
}); | |
// unique list of "themes" | |
var themes = data.reduce(function(acc, d) { | |
if (acc.indexOf(d.theme) === -1) { | |
acc.push(d.theme); | |
} | |
return acc; | |
}, []) | |
.sort(); | |
// unique variable names | |
var variables = data.reduce(function(acc, d) { | |
d.variable.forEach(function(v) { | |
if (acc.indexOf(v) === -1) acc.push(v); | |
}) | |
return acc; | |
}, []) | |
.sort(); | |
// nest our data on theme, then either "plus" or "minus" depending on value of "valence" | |
dataByTheme = d3.nest() | |
.key(function(d) { return d.theme }) | |
.key(function(d) { if (d.valence > 0) { return 'plus'; } return 'minus'; }) | |
.entries(data); | |
dataByTheme = d3.map(dataByTheme, function(d) { | |
return d.key; | |
}); | |
console.log(dataByTheme); | |
// nest our data by variable, then either "plus" or "minus" | |
dataByVariable = variables.map(function(v) { | |
var x = { name: '', values: [] }; | |
data.forEach(function(d) { | |
if (d.variable.indexOf(v) !== -1) { | |
x.name = v; | |
x.values.push(d); | |
} | |
}); | |
return x; | |
}); | |
dataByVariable = d3.map(dataByVariable, function(d) { | |
return d.name; | |
}); | |
// set our y scale domain | |
yScale.domain(themes); | |
} | |
</script> | |
</body> |
function draw(data, group, container, strength) { | |
strength = strength || false; | |
// Start by getting a distinct list of the groups that make up the rows in the chart | |
console.log(data); | |
var groups = get_distinct(data, group); | |
console.log(groups) | |
var summaries = []; | |
groups.forEach(function(g){ | |
var out = {"name": g, "chart": {"plus": [], "minus": []}}; | |
data.forEach(function(row){ | |
if (strength && row.strength != "Direct correlation") { console.log('yo'); return} ; | |
if (row[group] == g) { | |
row.valence > 0 ? out["chart"]["plus"].push(row) : out["chart"]["minus"].push(row); | |
} | |
}); | |
summaries.push(out); | |
}); | |
console.log(summaries) | |
// get the container | |
var container = d3.select(container); | |
var rows = container.selectAll("div.row") | |
.data(summaries, function(d) { return d.name; }); | |
// create the rows | |
var rowsenter = rows.enter() | |
.append("div") | |
.attr("class","row") | |
.style("top", function(d,i) {return (i * 60) + "px"}); | |
// create cells | |
rowsenter | |
.selectAll("div.cell") | |
.data(function(d) { return d3.entries(d) }) | |
.enter() | |
.append("div") | |
.attr("class","cell") | |
.classed("chart", function(d) { return d.key == "chart"; }) | |
.style("top","4.32px") | |
.style("left", function(d,i) { return ((i * 70) + 2) + "px"; }) | |
.text(function(d) { return d.key == "name" ? d.value : "" }) | |
// .attr("class", function(d) { return d.key == "chart" ? "chart" : "" }); | |
var rowsexit = rows.exit() | |
.style("background", "red") | |
.transition() | |
.duration(750) | |
.style("opacity", 0) | |
.remove(); | |
var plus = rowsenter.selectAll("div.chart").selectAll("div.chartcells.plus") | |
.data(function(d) { return d.value.plus }, function(d) { return d.zb_id }); | |
var plusenter = plus.enter() | |
.append("div") | |
.classed("chartcells","true") | |
.classed("plus","true") | |
.classed("weak", function(d) {return d.strength != "Direct correlation" ? true : false}) | |
.style("top","6px") | |
.style("left",function(d,i) {return (i * 20)+ "px"}); | |
plusexit = plus.exit() | |
.style("background", "red") | |
.transition() | |
.duration(750) | |
.style("opacity", 0) | |
.remove(); | |
var minus = rowsenter.selectAll("div.chart").selectAll("div.chartcells.minus") | |
.data(function(d) { return _.sortBy(d.value.minus, "valence") }, function(d) { return d.zb_id }); | |
var minusenter = minus.enter() | |
.append("div") | |
.classed("chartcells","true") | |
.classed("minus", function(d) { return d.valence < 0 ? true : false }) | |
.classed("neutral",function(d) { return d.valence * 1 == 0 ? true : false }) | |
.classed("weak", function(d) {return d.strength != "Direct correlation" ? true : false}) | |
.style("top","28px") | |
.style("left",function(d,i) {return (i * 20)+ "px"}) | |
var minusexit = minus.exit() | |
.style("background", "red") | |
.transition() | |
.duration(750) | |
.style("opacity", 0) | |
.remove(); | |
} // draw | |
// ex: | |
// setTimeout(function() { | |
// data.splice(0,1); | |
// draw(); | |
// },2000); | |
// Things to try to see animation: | |
// data.splice(0,1) | |
// draw(); | |
// resetSheet(); | |
// supports a single field name e.g. "name" | |
// or a subfield in the form of "chart.minus" (no more dimensions than 2 for a subfield) | |
function custom_sort(data, field, desc=false) { | |
var subfield = false, subfields = []; | |
if (field.indexOf(".") > -1) { | |
subfield = true; | |
var subfields = field.split('.'); | |
} | |
// | |
var sorted = _.sortBy(data, function(o) { | |
return subfield ? o[subfields[0]][subfields[1]] : o[field]; | |
}) | |
return desc ? sorted.reverse() : sorted; | |
} | |
function resetSheet() { | |
d3.selectAll("div.row") | |
.transition() | |
.duration(300) | |
.style("top", function(d,i) {return (i * 60) + "px"}); | |
}; | |
// called by buttons | |
function sortSheet(field, reverse=false) { | |
var data = d3.selectAll("div.row").data(); | |
// sort | |
data = custom_sort(data, field, reverse); | |
d3.selectAll("div.row").data(data, function(d) {return d.name}) | |
.transition() | |
.duration(500) | |
.style("top", function(d,i) {return (i * 60) + "px"}); | |
}; | |
function filterByEvidence() { | |
// TO DO | |
// read about transition and applying data | |
// what if filter here was just applying an entirely new dataset? | |
// plus first | |
var plus = d3.selectAll("div.chartcells.plus").data(); | |
plus = plus.filter(function(d) {return d.strength != "Direct correlation"}); | |
var minus = d3.selectAll("div.chartcells.minus").data(); | |
minus = minus.filter(function(d) {return d.strength != "Direct correlation"}); | |
d3.selectAll("div.chartcells.plus").data(plus, function(d) {return d.zb_id}) | |
.transition() | |
.duration(500) | |
// .style("left",function(d,i) {return (i * 20)+ "px"}); | |
.style("opacity",0); | |
d3.selectAll("div.chartcells.minus").data(minus, function(d) {return d.zb_id}) | |
.transition() | |
.duration(500) | |
// .style("left",function(d,i) {return (i * 20)+ "px"}); | |
.style("opacity",0); | |
} | |
// get distinct list by key from an array of objects | |
function get_distinct(array, key) { | |
var unique = {}; | |
var distinct = []; | |
for( var i in array ){ | |
if( typeof(unique[array[i][key]]) == "undefined"){ | |
distinct.push(array[i][key]); | |
} | |
unique[array[i][key]] = 0; | |
} | |
return distinct; | |
} |