Created
October 3, 2011 20:31
-
-
Save cmaes/1260153 to your computer and use it in GitHub Desktop.
Find all the elementary circuits of a directed graph
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [numcycles,cycles] = find_elem_circuits(A) | |
if ~issparse(A) | |
A = sparse(A); | |
end | |
n = size(A,1); | |
Blist = cell(n,1); | |
blocked = false(1,n); | |
s = 1; | |
cycles = {}; | |
stack=[]; | |
function unblock(u) | |
blocked(u) = false; | |
for w=Blist{u} | |
if blocked(w) | |
unblock(w) | |
end | |
end | |
Blist{u} = []; | |
end | |
function f = circuit(v, s, C) | |
f = false; | |
stack(end+1) = v; | |
blocked(v) = true; | |
for w=find(C(v,:)) | |
if w == s | |
cycles{end+1} = [stack s]; | |
f = true; | |
elseif ~blocked(w) | |
if circuit(w, s, C) | |
f = true; | |
end | |
end | |
end | |
if f | |
unblock(v) | |
else | |
for w = find(C(v,:)) | |
if ~ismember(v, Blist{w}) | |
Bnode = Blist{w}; | |
Blist{w} = [Bnode v]; | |
end | |
end | |
end | |
stack(end) = []; | |
end | |
while s < n | |
% Subgraph of G induced by {s, s+1, ..., n} | |
F = A; | |
F(1:s-1,:) = 0; | |
F(:,1:s-1) = 0; | |
% components computes the strongly connected components of | |
% a graph. This function is implemented in Matlab BGL | |
% http://dgleich.github.com/matlab-bgl/ | |
[ci, sizec] = components(F); | |
if any(sizec >= 2) | |
cycle_components = find(sizec >= 2); | |
least_node = find(ismember(ci, cycle_components),1); | |
comp_nodes = find(ci == ci(least_node)); | |
Ak = sparse(n,n); | |
Ak(comp_nodes,comp_nodes) = F(comp_nodes,comp_nodes); | |
s = comp_nodes(1); | |
blocked(comp_nodes) = false; | |
Blist(comp_nodes) = cell(length(comp_nodes),1); | |
circuit(s, s, Ak); | |
s = s + 1; | |
else | |
break; | |
end | |
end | |
numcycles = length(cycles); | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Can you explain how to use the function? Is A an adjacency-matrix representation of the graph?