Skip to content

Instantly share code, notes, and snippets.

@cmdr2
Last active April 2, 2025 11:38
12,13c12,15
< #include "ggml-cpu/unary-ops.h"
< #include "ggml-cpu/binary-ops.h"
---
> #include "unary-ops.h"
> #include "binary-ops.h"
> #include "vec.h"
> #include "ops.h"
86,109d87
< #if defined(GGML_USE_ACCELERATE)
< #include <Accelerate/Accelerate.h>
< #endif
<
< // floating point type used to accumulate sums
< typedef double ggml_float;
<
< #define GGML_GELU_FP16
< #define GGML_GELU_QUICK_FP16
<
< #define GGML_SOFT_MAX_UNROLL 4
< #define GGML_VEC_DOT_UNROLL 2
< #define GGML_VEC_MAD_UNROLL 32
<
< //
< // global data
< //
<
< // precomputed gelu table for f16 (128 KB)
< static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
<
< // precomputed quick gelu table for f16 (128 KB)
< static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
<
233,255d210
< //
< // cache line
< //
<
< #if defined(__cpp_lib_hardware_interference_size)
< #define CACHE_LINE_SIZE hardware_destructive_interference_size
< #else
< #if defined(__POWER9_VECTOR__)
< #define CACHE_LINE_SIZE 128
< #elif defined(__VXE__) || defined(__VXE2__)
< #define CACHE_LINE_SIZE 256
< #else
< #define CACHE_LINE_SIZE 64
< #endif
< #endif
<
< static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
<
<
< static void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
< static void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
< static void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
<
428,1308d382
< // simd mappings
< //
<
< // we define a common set of C macros which map to specific intrinsics based on the current architecture
< // we then implement the fundamental computation operations below using only these macros
< // adding support for new architectures requires to define the corresponding SIMD macros
< //
< // GGML_F32_STEP / GGML_F16_STEP
< // number of elements to process in a single step
< //
< // GGML_F32_EPR / GGML_F16_EPR
< // number of elements to fit in a single register
< //
<
< #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
<
< #define GGML_SIMD
<
< // F32 NEON
<
< #define GGML_F32_STEP 16
< #define GGML_F32_EPR 4
<
< #define GGML_F32x4 float32x4_t
< #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
< #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
< #define GGML_F32x4_LOAD vld1q_f32
< #define GGML_F32x4_STORE vst1q_f32
< #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
< #define GGML_F32x4_ADD vaddq_f32
< #define GGML_F32x4_MUL vmulq_f32
< #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
< #define GGML_F32x4_REDUCE(res, x) \
< { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
< } \
< (res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
< }
<
< #define GGML_F32_VEC GGML_F32x4
< #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x4_STORE
< #define GGML_F32_VEC_FMA GGML_F32x4_FMA
< #define GGML_F32_VEC_ADD GGML_F32x4_ADD
< #define GGML_F32_VEC_MUL GGML_F32x4_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
<
< // F16 NEON
<
< #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
< #define GGML_F16_STEP 32
< #define GGML_F16_EPR 8
<
< #define GGML_F16x8 float16x8_t
< #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
< #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
< #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
< #define GGML_F16x8_STORE vst1q_f16
< #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
< #define GGML_F16x8_ADD vaddq_f16
< #define GGML_F16x8_MUL vmulq_f16
< #define GGML_F16x8_REDUCE(res, x) \
< do { \
< int offset = GGML_F16_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
< } \
< const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
< const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
< (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
< } while (0)
<
< #define GGML_F16_VEC GGML_F16x8
< #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
< #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
< #define GGML_F16_VEC_FMA GGML_F16x8_FMA
< #define GGML_F16_VEC_ADD GGML_F16x8_ADD
< #define GGML_F16_VEC_MUL GGML_F16x8_MUL
< #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
< #else
< // if FP16 vector arithmetic is not supported, we use FP32 instead
< // and take advantage of the vcvt_ functions to convert to/from FP16
<
< #define GGML_F16_STEP 16
< #define GGML_F16_EPR 4
<
< #define GGML_F32Cx4 float32x4_t
< #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
< #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
< #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
< #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
< #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
< #define GGML_F32Cx4_ADD vaddq_f32
< #define GGML_F32Cx4_MUL vmulq_f32
< #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
<
< #define GGML_F16_VEC GGML_F32Cx4
< #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
< #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
< #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
< #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
< #endif
<
< #elif defined(__AVX512F__)
<
< #define GGML_SIMD
<
< // F32 AVX512
<
< #define GGML_F32_STEP 64
< #define GGML_F32_EPR 16
<
< #define GGML_F32x16 __m512
< #define GGML_F32x16_ZERO _mm512_setzero_ps()
< #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
< #define GGML_F32x16_LOAD _mm512_loadu_ps
< #define GGML_F32x16_STORE _mm512_storeu_ps
< // _mm512_fmadd_ps is defined in AVX512F so no guard is required
< #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
< #define GGML_F32x16_ADD _mm512_add_ps
< #define GGML_F32x16_MUL _mm512_mul_ps
< #define GGML_F32x16_REDUCE(res, x) \
< do { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm512_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm512_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm512_add_ps(x[i], x[offset+i]); \
< } \
< res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
< } while (0)
<
< // TODO: is this optimal ?
<
< #define GGML_F32_VEC GGML_F32x16
< #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x16_STORE
< #define GGML_F32_VEC_FMA GGML_F32x16_FMA
< #define GGML_F32_VEC_ADD GGML_F32x16_ADD
< #define GGML_F32_VEC_MUL GGML_F32x16_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
<
< // F16 AVX512
<
< // F16 AVX
<
< #define GGML_F16_STEP 64
< #define GGML_F16_EPR 16
<
< // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
<
< #define GGML_F32Cx16 __m512
< #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
< #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
<
< // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
< // so F16C guard isn't required
< #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
< #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
<
< #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
< #define GGML_F32Cx16_ADD _mm512_add_ps
< #define GGML_F32Cx16_MUL _mm512_mul_ps
< #define GGML_F32Cx16_REDUCE(res, x) \
< do { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm512_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm512_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm512_add_ps(x[i], x[offset+i]); \
< } \
< res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
< } while (0)
<
< #define GGML_F16_VEC GGML_F32Cx16
< #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
< #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
< #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
<
< #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
< #elif defined(__AVX__)
<
< #define GGML_SIMD
<
< // F32 AVX
<
< #define GGML_F32_STEP 32
< #define GGML_F32_EPR 8
<
< #define GGML_F32x8 __m256
< #define GGML_F32x8_ZERO _mm256_setzero_ps()
< #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
< #define GGML_F32x8_LOAD _mm256_loadu_ps
< #define GGML_F32x8_STORE _mm256_storeu_ps
< #if defined(__FMA__)
< #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
< #else
< #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
< #endif
< #define GGML_F32x8_ADD _mm256_add_ps
< #define GGML_F32x8_MUL _mm256_mul_ps
< #define GGML_F32x8_REDUCE(res, x) \
< do { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm256_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm256_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm256_add_ps(x[i], x[offset+i]); \
< } \
< const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
< _mm256_extractf128_ps(x[0], 1)); \
< const __m128 t1 = _mm_hadd_ps(t0, t0); \
< res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
< } while (0)
< // TODO: is this optimal ?
<
< #define GGML_F32_VEC GGML_F32x8
< #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x8_STORE
< #define GGML_F32_VEC_FMA GGML_F32x8_FMA
< #define GGML_F32_VEC_ADD GGML_F32x8_ADD
< #define GGML_F32_VEC_MUL GGML_F32x8_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
<
< // F16 AVX
<
< #define GGML_F16_STEP 32
< #define GGML_F16_EPR 8
<
< // F16 arithmetic is not supported by AVX, so we use F32 instead
<
< #define GGML_F32Cx8 __m256
< #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
< #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
<
< #if defined(__F16C__)
< // the _mm256_cvt intrinsics require F16C
< #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
< #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
< #else
< static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
< float tmp[8];
<
< for (int i = 0; i < 8; i++) {
< tmp[i] = GGML_FP16_TO_FP32(x[i]);
< }
<
< return _mm256_loadu_ps(tmp);
< }
< static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
< float arr[8];
<
< _mm256_storeu_ps(arr, y);
<
< for (int i = 0; i < 8; i++)
< x[i] = GGML_FP32_TO_FP16(arr[i]);
< }
< #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
< #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
< #endif
<
< #define GGML_F32Cx8_FMA GGML_F32x8_FMA
< #define GGML_F32Cx8_ADD _mm256_add_ps
< #define GGML_F32Cx8_MUL _mm256_mul_ps
< #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
<
< #define GGML_F16_VEC GGML_F32Cx8
< #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
< #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
< #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
<
< #elif defined(__POWER9_VECTOR__)
<
< #define GGML_SIMD
<
< // F32 POWER9
<
< #define GGML_F32_STEP 32
< #define GGML_F32_EPR 4
<
< #define GGML_F32x4 vector float
< #define GGML_F32x4_ZERO 0.0f
< #define GGML_F32x4_SET1 vec_splats
< #define GGML_F32x4_LOAD(p) vec_xl(0, p)
< #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
< #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
< #define GGML_F32x4_ADD vec_add
< #define GGML_F32x4_MUL vec_mul
< #define GGML_F32x4_REDUCE(res, x) \
< { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = vec_add(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = vec_add(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = vec_add(x[i], x[offset+i]); \
< } \
< res = vec_extract(x[0], 0) + \
< vec_extract(x[0], 1) + \
< vec_extract(x[0], 2) + \
< vec_extract(x[0], 3); \
< }
<
< #define GGML_F32_VEC GGML_F32x4
< #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x4_STORE
< #define GGML_F32_VEC_FMA GGML_F32x4_FMA
< #define GGML_F32_VEC_ADD GGML_F32x4_ADD
< #define GGML_F32_VEC_MUL GGML_F32x4_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
<
< // F16 POWER9
< #define GGML_F16_STEP GGML_F32_STEP
< #define GGML_F16_EPR GGML_F32_EPR
< #define GGML_F16_VEC GGML_F32x4
< #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F16_VEC_FMA GGML_F32x4_FMA
< #define GGML_F16_VEC_ADD GGML_F32x4_ADD
< #define GGML_F16_VEC_MUL GGML_F32x4_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
< // Use vec_xl, not vec_ld, in case the load address is not aligned.
< #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
< vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
< vec_extract_fp32_from_shortl(vec_xl(0, p))
< #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
< #define GGML_F16_VEC_STORE(p, r, i) \
< if (i & 0x1) \
< vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
< r[i - GGML_ENDIAN_BYTE(0)]), \
< 0, p - GGML_F16_EPR)
<
< #elif defined(__wasm_simd128__)
<
< #define GGML_SIMD
<
< // F32 WASM
<
< #define GGML_F32_STEP 16
< #define GGML_F32_EPR 4
<
< #define GGML_F32x4 v128_t
< #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
< #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
< #define GGML_F32x4_LOAD wasm_v128_load
< #define GGML_F32x4_STORE wasm_v128_store
< #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
< #define GGML_F32x4_ADD wasm_f32x4_add
< #define GGML_F32x4_MUL wasm_f32x4_mul
< #define GGML_F32x4_REDUCE(res, x) \
< { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
< } \
< res = wasm_f32x4_extract_lane(x[0], 0) + \
< wasm_f32x4_extract_lane(x[0], 1) + \
< wasm_f32x4_extract_lane(x[0], 2) + \
< wasm_f32x4_extract_lane(x[0], 3); \
< }
<
< #define GGML_F32_VEC GGML_F32x4
< #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x4_STORE
< #define GGML_F32_VEC_FMA GGML_F32x4_FMA
< #define GGML_F32_VEC_ADD GGML_F32x4_ADD
< #define GGML_F32_VEC_MUL GGML_F32x4_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
<
< // F16 WASM
<
< #define GGML_F16_STEP 16
< #define GGML_F16_EPR 4
<
< inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
< float tmp[4];
<
< tmp[0] = GGML_FP16_TO_FP32(p[0]);
< tmp[1] = GGML_FP16_TO_FP32(p[1]);
< tmp[2] = GGML_FP16_TO_FP32(p[2]);
< tmp[3] = GGML_FP16_TO_FP32(p[3]);
<
< return wasm_v128_load(tmp);
< }
<
< inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
< float tmp[4];
<
< wasm_v128_store(tmp, x);
<
< p[0] = GGML_FP32_TO_FP16(tmp[0]);
< p[1] = GGML_FP32_TO_FP16(tmp[1]);
< p[2] = GGML_FP32_TO_FP16(tmp[2]);
< p[3] = GGML_FP32_TO_FP16(tmp[3]);
< }
<
< #define GGML_F16x4 v128_t
< #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
< #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
< #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
< #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
< #define GGML_F16x4_FMA GGML_F32x4_FMA
< #define GGML_F16x4_ADD wasm_f32x4_add
< #define GGML_F16x4_MUL wasm_f32x4_mul
< #define GGML_F16x4_REDUCE(res, x) \
< { \
< int offset = GGML_F16_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
< } \
< res = (ggml_float) (wasm_f32x4_extract_lane(x[0], 0) + \
< wasm_f32x4_extract_lane(x[0], 1) + \
< wasm_f32x4_extract_lane(x[0], 2) + \
< wasm_f32x4_extract_lane(x[0], 3)); \
< }
<
< #define GGML_F16_VEC GGML_F16x4
< #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
< #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F16x4_FMA
< #define GGML_F16_VEC_ADD GGML_F16x4_ADD
< #define GGML_F16_VEC_MUL GGML_F16x4_MUL
< #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
<
< #elif defined(__SSE3__)
<
< #define GGML_SIMD
<
< // F32 SSE
<
< #define GGML_F32_STEP 32
< #define GGML_F32_EPR 4
<
< #define GGML_F32x4 __m128
< #define GGML_F32x4_ZERO _mm_setzero_ps()
< #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
< #define GGML_F32x4_LOAD _mm_loadu_ps
< #define GGML_F32x4_STORE _mm_storeu_ps
< #if defined(__FMA__)
< // TODO: Does this work?
< #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
< #else
< #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
< #endif
< #define GGML_F32x4_ADD _mm_add_ps
< #define GGML_F32x4_MUL _mm_mul_ps
< #define GGML_F32x4_REDUCE(res, x) \
< { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm_add_ps(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = _mm_add_ps(x[i], x[offset+i]); \
< } \
< const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
< res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
< }
< // TODO: is this optimal ?
<
< #define GGML_F32_VEC GGML_F32x4
< #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x4_STORE
< #define GGML_F32_VEC_FMA GGML_F32x4_FMA
< #define GGML_F32_VEC_ADD GGML_F32x4_ADD
< #define GGML_F32_VEC_MUL GGML_F32x4_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
<
< // F16 SSE
<
< #define GGML_F16_STEP 32
< #define GGML_F16_EPR 4
<
< static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
< float tmp[4];
<
< tmp[0] = GGML_FP16_TO_FP32(x[0]);
< tmp[1] = GGML_FP16_TO_FP32(x[1]);
< tmp[2] = GGML_FP16_TO_FP32(x[2]);
< tmp[3] = GGML_FP16_TO_FP32(x[3]);
<
< return _mm_loadu_ps(tmp);
< }
<
< static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
< float arr[4];
<
< _mm_storeu_ps(arr, y);
<
< x[0] = GGML_FP32_TO_FP16(arr[0]);
< x[1] = GGML_FP32_TO_FP16(arr[1]);
< x[2] = GGML_FP32_TO_FP16(arr[2]);
< x[3] = GGML_FP32_TO_FP16(arr[3]);
< }
<
< #define GGML_F32Cx4 __m128
< #define GGML_F32Cx4_ZERO _mm_setzero_ps()
< #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
< #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
< #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
< #define GGML_F32Cx4_FMA GGML_F32x4_FMA
< #define GGML_F32Cx4_ADD _mm_add_ps
< #define GGML_F32Cx4_MUL _mm_mul_ps
< #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
<
< #define GGML_F16_VEC GGML_F32Cx4
< #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
< #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
< #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
<
< #elif defined(__loongarch_asx)
<
< #define GGML_SIMD
<
< // F32 LASX
< #define GGML_F32_STEP 32
< #define GGML_F32_EPR 8
<
< #define GGML_F32x8 __m256
< #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
< #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
< #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
< #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
< #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
< #define GGML_F32x8_ADD __lasx_xvfadd_s
< #define GGML_F32x8_MUL __lasx_xvfmul_s
< #define GGML_F32x8_REDUCE(res, x) \
< do { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
< } \
< float *tmp_p = (float *)&x[0]; \
< res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
< } while (0)
< // TODO: is this optimal ?
<
< #define GGML_F32_VEC GGML_F32x8
< #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x8_STORE
< #define GGML_F32_VEC_FMA GGML_F32x8_FMA
< #define GGML_F32_VEC_ADD GGML_F32x8_ADD
< #define GGML_F32_VEC_MUL GGML_F32x8_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
<
< // F16 LASX
<
< #define GGML_F16_STEP 32
< #define GGML_F16_EPR 8
<
< // F16 arithmetic is not supported by LASX, so we use F32 instead
<
< #define GGML_F32Cx8 __m256
< #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
< #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
<
< static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
< __m256i a;
< memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
< a = __lasx_xvpermi_d(a, 0 | (1 << 4));
< return __lasx_xvfcvtl_s_h(a);
< }
<
< static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
< __m256i a = __lasx_xvfcvt_h_s(y, y);
< a = __lasx_xvpermi_d(a, 0 | (2 << 2));
< memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
< }
< #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
< #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
<
< #define GGML_F32Cx8_FMA GGML_F32x8_FMA
< #define GGML_F32Cx8_ADD __lasx_xvfadd_s
< #define GGML_F32Cx8_MUL __lasx_xvfmul_s
< #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
<
< #define GGML_F16_VEC GGML_F32Cx8
< #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
< #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
< #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
<
< #elif defined(__loongarch_sx)
<
< #define GGML_SIMD
<
< // F32 LSX
<
< #define GGML_F32_STEP 32
< #define GGML_F32_EPR 4
<
< #define GGML_F32x4 __m128
< #define GGML_F32x4_ZERO __lsx_vldi(0)
< #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
< #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
< #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
< #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
< #define GGML_F32x4_ADD __lsx_vfadd_s
< #define GGML_F32x4_MUL __lsx_vfmul_s
< #define GGML_F32x4_REDUCE(res, x) \
< { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
< } \
< __m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
< tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
< tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
< const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
< tmp = __lsx_vsrli_d((__m128i) t0, 32); \
< tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
< tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
< res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
< }
<
< #define GGML_F32_VEC GGML_F32x4
< #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x4_STORE
< #define GGML_F32_VEC_FMA GGML_F32x4_FMA
< #define GGML_F32_VEC_ADD GGML_F32x4_ADD
< #define GGML_F32_VEC_MUL GGML_F32x4_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
<
< // F16 LSX
<
< #define GGML_F16_STEP 32
< #define GGML_F16_EPR 4
<
< static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
< float tmp[4];
<
< tmp[0] = GGML_FP16_TO_FP32(x[0]);
< tmp[1] = GGML_FP16_TO_FP32(x[1]);
< tmp[2] = GGML_FP16_TO_FP32(x[2]);
< tmp[3] = GGML_FP16_TO_FP32(x[3]);
<
< return __lsx_vld(tmp, 0);
< }
<
< static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
< float arr[4];
<
< __lsx_vst(y, arr, 0);
<
< x[0] = GGML_FP32_TO_FP16(arr[0]);
< x[1] = GGML_FP32_TO_FP16(arr[1]);
< x[2] = GGML_FP32_TO_FP16(arr[2]);
< x[3] = GGML_FP32_TO_FP16(arr[3]);
< }
<
< #define GGML_F32Cx4 __m128
< #define GGML_F32Cx4_ZERO __lsx_vldi(0)
< #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
< #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
< #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
< #define GGML_F32Cx4_FMA GGML_F32x4_FMA
< #define GGML_F32Cx4_ADD __lsx_vfadd_s
< #define GGML_F32Cx4_MUL __lsx_vfmul_s
< #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
<
< #define GGML_F16_VEC GGML_F32Cx4
< #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
< #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
< #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
< #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
< #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
<
< #elif defined(__VXE__) || defined(__VXE2__)
<
< #define GGML_SIMD
<
< // F32 s390x
<
< #define GGML_F32_STEP 32
< #define GGML_F32_EPR 4
<
< #define GGML_F32x4 __vector float
< #define GGML_F32x4_ZERO vec_splats(0.0f)
< #define GGML_F32x4_SET1 vec_splats
< #define GGML_F32x4_LOAD(p) vec_xl(0, p)
< #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
< #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
< #define GGML_F32x4_ADD vec_add
< #define GGML_F32x4_MUL vec_mul
< #define GGML_F32x4_REDUCE(res, x) \
< { \
< int offset = GGML_F32_ARR >> 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = vec_add(x[i], x[offset + i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = vec_add(x[i], x[offset + i]); \
< } \
< offset >>= 1; \
< for (int i = 0; i < offset; ++i) { \
< x[i] = vec_add(x[i], x[offset + i]); \
< } \
< res = vec_extract(x[0], 0) + \
< vec_extract(x[0], 1) + \
< vec_extract(x[0], 2) + \
< vec_extract(x[0], 3); \
< }
<
< #define GGML_F32_VEC GGML_F32x4
< #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
< #define GGML_F32_VEC_STORE GGML_F32x4_STORE
< #define GGML_F32_VEC_FMA GGML_F32x4_FMA
< #define GGML_F32_VEC_ADD GGML_F32x4_ADD
< #define GGML_F32_VEC_MUL GGML_F32x4_MUL
< #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
<
< // F16 s390x
< #define GGML_F16_STEP GGML_F32_STEP
< #define GGML_F16_EPR GGML_F32_EPR
<
< static inline __vector float __lzs_f16cx4_load(const ggml_fp16_t * x) {
< float tmp[4];
<
< for (int i = 0; i < 4; i++) {
< tmp[i] = GGML_FP16_TO_FP32(x[i]);
< }
<
< return vec_xl(0, tmp);
< }
<
< static inline void __lzs_f16cx4_store(ggml_fp16_t * x, __vector float y) {
< float arr[4];
<
< vec_xst(y, 0, arr);
<
< for (int i = 0; i < 4; i++) {
< x[i] = GGML_FP32_TO_FP16(arr[i]);
< }
< }
<
< #define GGML_F16_VEC GGML_F32x4
< #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
< #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
< #define GGML_F16_VEC_LOAD(p, i) __lzs_f16cx4_load(p)
< #define GGML_F16_VEC_STORE(p, r, i) __lzs_f16cx4_store(p, r[i])
< #define GGML_F16_VEC_FMA GGML_F32x4_FMA
< #define GGML_F16_VEC_ADD GGML_F32x4_ADD
< #define GGML_F16_VEC_MUL GGML_F32x4_MUL
< #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
<
< #endif
<
< // GGML_F32_ARR / GGML_F16_ARR
< // number of registers to use per step
< #ifdef GGML_SIMD
< #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
< #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
< #endif
<
< //
1407,2404d480
< //
< // fundamental operations
< //
<
< inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
< inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
<
< inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
< inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
<
< inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
< inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
< inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
< inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
< for (int i = 0; i < n; ++i) {
< z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) + GGML_FP16_TO_FP32(y[i]));
< }
< }
< inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
< inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
< inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
< inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
< inline static void ggml_vec_sub_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
< for (int i = 0; i < n; ++i) {
< z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) - GGML_FP16_TO_FP32(y[i]));
< }
< }
< inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
< inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
< inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
< inline static void ggml_vec_neg_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(-GGML_FP16_TO_FP32(x[i]));
< }
< }
<
< inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
< inline static void ggml_vec_mul_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
< for (int i = 0; i < n; ++i) {
< z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) * GGML_FP16_TO_FP32(y[i]));
< }
< }
< inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
< inline static void ggml_vec_div_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
< for (int i = 0; i < n; ++i) {
< z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) / GGML_FP16_TO_FP32(y[i]));
< }
< }
<
< static void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
< assert(nrc == 1);
< UNUSED(nrc);
< UNUSED(bx);
< UNUSED(by);
< UNUSED(bs);
<
< #if defined(GGML_SIMD)
< float sumf = 0.0f;
< const int np = (n & ~(GGML_F32_STEP - 1));
<
< GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
<
< GGML_F32_VEC ax[GGML_F32_ARR];
< GGML_F32_VEC ay[GGML_F32_ARR];
<
< for (int i = 0; i < np; i += GGML_F32_STEP) {
< for (int j = 0; j < GGML_F32_ARR; j++) {
< ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
< ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
<
< sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
< }
< }
<
< // reduce sum0..sum3 to sum0
< GGML_F32_VEC_REDUCE(sumf, sum);
<
< // leftovers
< for (int i = np; i < n; ++i) {
< sumf += x[i]*y[i];
< }
< #else
< // scalar
< ggml_float sumf = 0.0;
< for (int i = 0; i < n; ++i) {
< sumf += (ggml_float)(x[i]*y[i]);
< }
< #endif
<
< *s = sumf;
< }
<
< static void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) {
< assert(nrc == 1);
< UNUSED(nrc);
< UNUSED(bx);
< UNUSED(by);
< UNUSED(bs);
< int i = 0;
< ggml_float sumf = 0;
<
< #if defined(__AVX512BF16__)
< __m512 c1 = _mm512_setzero_ps();
< __m512 c2 = _mm512_setzero_ps();
< for (; i + 64 <= n; i += 64) {
< c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
< m512bh(_mm512_loadu_si512((y + i))));
< c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
< m512bh(_mm512_loadu_si512((y + i + 32))));
< }
< sumf += (ggml_float)_mm512_reduce_add_ps(c1);
< sumf += (ggml_float)_mm512_reduce_add_ps(c2);
<
< #elif defined(__AVX512F__)
< #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
< __m512 c1 = _mm512_setzero_ps();
< __m512 c2 = _mm512_setzero_ps();
< for (; i + 32 <= n; i += 32) {
< c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
< c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
< }
< sumf += (ggml_float)_mm512_reduce_add_ps(c1);
< sumf += (ggml_float)_mm512_reduce_add_ps(c2);
<
< #undef LOAD
< #elif defined(__AVX2__) || defined(__AVX__)
< #if defined(__AVX2__)
< #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
< #else
< #define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
< #endif
< __m256 c1 = _mm256_setzero_ps();
< __m256 c2 = _mm256_setzero_ps();
< __m256 c3 = _mm256_setzero_ps();
< __m256 c4 = _mm256_setzero_ps();
< for (; i + 32 <= n; i += 32) {
< c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
< c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
< c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
< c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
< }
< __m128 g;
< c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
< _mm256_add_ps(c2, c4));
< g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
< _mm256_castps256_ps128(c1));
< g = _mm_add_ps(g, _mm_movehl_ps(g, g));
< g = _mm_add_ss(g, _mm_movehdup_ps(g));
< sumf += (ggml_float)_mm_cvtss_f32(g);
<
< #undef LOAD
< #endif
<
< for (; i < n; ++i) {
< sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
< GGML_BF16_TO_FP32(y[i]));
< }
< *s = sumf;
< }
<
< static void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) {
< assert(nrc == 1);
< UNUSED(nrc);
< UNUSED(bx);
< UNUSED(by);
< UNUSED(bs);
<
< ggml_float sumf = 0.0;
<
< #if defined(GGML_SIMD)
< const int np = (n & ~(GGML_F16_STEP - 1));
<
< GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
<
< GGML_F16_VEC ax[GGML_F16_ARR];
< GGML_F16_VEC ay[GGML_F16_ARR];
<
< for (int i = 0; i < np; i += GGML_F16_STEP) {
< for (int j = 0; j < GGML_F16_ARR; j++) {
< ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
< ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
<
< sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
< }
< }
<
< // reduce sum0..sum3 to sum0
< GGML_F16_VEC_REDUCE(sumf, sum);
<
< // leftovers
< for (int i = np; i < n; ++i) {
< sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
< }
< #else
< for (int i = 0; i < n; ++i) {
< sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
< }
< #endif
<
< *s = sumf;
< }
<
< // compute GGML_VEC_DOT_UNROLL dot products at once
< // xs - x row stride in bytes
< inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GGML_RESTRICT s, void * GGML_RESTRICT xv, ggml_fp16_t * GGML_RESTRICT y) {
< ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
<
< ggml_fp16_t * GGML_RESTRICT x[GGML_VEC_DOT_UNROLL];
<
< for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
< x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
< }
<
< #if defined(GGML_SIMD)
< const int np = (n & ~(GGML_F16_STEP - 1));
<
< GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
<
< GGML_F16_VEC ax[GGML_F16_ARR];
< GGML_F16_VEC ay[GGML_F16_ARR];
<
< for (int i = 0; i < np; i += GGML_F16_STEP) {
< for (int j = 0; j < GGML_F16_ARR; j++) {
< ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
<
< for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
< ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
<
< sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
< }
< }
< }
<
< // reduce sum0..sum3 to sum0
< for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
< GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
< }
<
< // leftovers
< for (int i = np; i < n; ++i) {
< for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
< sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
< }
< }
< #else
< for (int i = 0; i < n; ++i) {
< for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
< sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
< }
< }
< #endif
<
< for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
< s[i] = sumf[i];
< }
< }
<
< inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
< #if defined(GGML_SIMD)
< const int np = (n & ~(GGML_F32_STEP - 1));
<
< GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
<
< GGML_F32_VEC ax[GGML_F32_ARR];
< GGML_F32_VEC ay[GGML_F32_ARR];
<
< for (int i = 0; i < np; i += GGML_F32_STEP) {
< for (int j = 0; j < GGML_F32_ARR; j++) {
< ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
< ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
< ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
<
< GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
< }
< }
<
< // leftovers
< for (int i = np; i < n; ++i) {
< y[i] += x[i]*v;
< }
< #else
< // scalar
< for (int i = 0; i < n; ++i) {
< y[i] += x[i]*v;
< }
< #endif
< }
<
< inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
< #if defined(GGML_SIMD)
< const int np = (n & ~(GGML_F16_STEP - 1));
<
< GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
<
< GGML_F16_VEC ax[GGML_F16_ARR];
< GGML_F16_VEC ay[GGML_F16_ARR];
<
< for (int i = 0; i < np; i += GGML_F16_STEP) {
< for (int j = 0; j < GGML_F16_ARR; j++) {
< ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
< ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
< ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
<
< GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
< }
< }
<
< // leftovers
< for (int i = np; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
< }
< #else
< // scalar
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
< }
< #endif
< }
<
< // xs and vs are byte strides of x and v
< inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * GGML_RESTRICT y, const float * GGML_RESTRICT xv, const float * GGML_RESTRICT vv) {
<
< const float * GGML_RESTRICT x[GGML_VEC_MAD_UNROLL];
< const float * GGML_RESTRICT v[GGML_VEC_MAD_UNROLL];
<
< for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
< x[i] = (const float *) ((const char *) xv + i*xs);
< v[i] = (const float *) ((const char *) vv + i*vs);
< }
<
< #if defined(GGML_SIMD)
< const int np = (n & ~(GGML_F32_STEP - 1));
<
< GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
<
< for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
< vx[k] = GGML_F32_VEC_SET1(v[k][0]);
< }
<
< GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
< GGML_F32_VEC ay[GGML_F32_ARR];
<
< for (int i = 0; i < np; i += GGML_F32_STEP) {
< for (int j = 0; j < GGML_F32_ARR; j++) {
< ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
<
< for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
< ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
< ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
< }
<
< GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
< }
< }
<
< // leftovers
< for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
< for (int i = np; i < n; ++i) {
< y[i] += x[k][i]*v[k][0];
< }
< }
< #else
< // scalar
< for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
< for (int i = 0; i < n; ++i) {
< y[i] += x[k][i]*v[k][0];
< }
< }
< #endif
< }
<
< //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
< inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
< #if defined(GGML_USE_ACCELERATE)
< vDSP_vsmul(y, 1, &v, y, 1, n);
< #elif defined(GGML_SIMD)
< const int np = (n & ~(GGML_F32_STEP - 1));
<
< GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
<
< GGML_F32_VEC ay[GGML_F32_ARR];
<
< for (int i = 0; i < np; i += GGML_F32_STEP) {
< for (int j = 0; j < GGML_F32_ARR; j++) {
< ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
< ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
<
< GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
< }
< }
<
< // leftovers
< for (int i = np; i < n; ++i) {
< y[i] *= v;
< }
< #else
< // scalar
< for (int i = 0; i < n; ++i) {
< y[i] *= v;
< }
< #endif
< }
<
< inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
< #if defined(GGML_SIMD)
< const int np = (n & ~(GGML_F16_STEP - 1));
<
< GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
<
< GGML_F16_VEC ay[GGML_F16_ARR];
<
< for (int i = 0; i < np; i += GGML_F16_STEP) {
< for (int j = 0; j < GGML_F16_ARR; j++) {
< ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
< ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
<
< GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
< }
< }
<
< // leftovers
< for (int i = np; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
< }
< #else
< // scalar
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
< }
< #endif
< }
<
< inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
< inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
< inline static void ggml_vec_sqr_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< float v = GGML_FP16_TO_FP32(x[i]);
< y[i] = GGML_FP32_TO_FP16(v*v);
< }
< }
< inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
< inline static void ggml_vec_sqrt_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(sqrtf(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
< inline static void ggml_vec_log_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(logf(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
< inline static void ggml_vec_sin_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(sinf(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
< inline static void ggml_vec_cos_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(cosf(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
< inline static void ggml_vec_abs_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(fabsf(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
< inline static void ggml_vec_sgn_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< float v = GGML_FP16_TO_FP32(x[i]);
< y[i] = GGML_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f));
< }
< }
< inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
< inline static void ggml_vec_step_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16((GGML_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f);
< }
< }
< inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
< inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(tanhf(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
< inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(expm1f(GGML_FP16_TO_FP32(x[i])));
< }
< }
< inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
< inline static void ggml_vec_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< float v = GGML_FP16_TO_FP32(x[i]);
< y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v : 0.f);
< }
< }
< inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
< inline static void ggml_vec_leaky_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const float ns) {
< for (int i = 0; i < n; ++i) {
< float v = GGML_FP16_TO_FP32(x[i]);
< y[i] = GGML_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f));
< }
< }
< inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
< inline static void ggml_vec_sigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(1.f / (1.f + expf(-GGML_FP16_TO_FP32(x[i]))));
< }
< }
< // TODO: optimize performance
< inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
< inline static void ggml_vec_hardswish_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< float v = GGML_FP16_TO_FP32(x[i]);
< y[i] = GGML_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f)));
< }
< }
< inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
< inline static void ggml_vec_hardsigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f)));
< }
< }
< inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
< inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = GGML_FP32_TO_FP16(expf(GGML_FP16_TO_FP32(x[i])));
< }
< }
<
< static const float GELU_COEF_A = 0.044715f;
< static const float GELU_QUICK_COEF = -1.702f;
< static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
<
< inline static float ggml_gelu_f32(float x) {
< return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
< }
<
< inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< const uint16_t * i16 = (const uint16_t *) x;
< for (int i = 0; i < n; ++i) {
< y[i] = ggml_table_gelu_f16[i16[i]];
< }
< }
<
< #ifdef GGML_GELU_FP16
< inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
< uint16_t t;
< for (int i = 0; i < n; ++i) {
< if (x[i] <= -10.0f) {
< y[i] = 0.0f;
< } else if (x[i] >= 10.0f) {
< y[i] = x[i];
< } else {
< ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
< memcpy(&t, &fp16, sizeof(uint16_t));
< y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
< }
< }
< }
< #else
< inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = ggml_gelu_f32(x[i]);
< }
< }
< #endif
<
< inline static float ggml_gelu_quick_f32(float x) {
< return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
< }
<
< //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< // const uint16_t * i16 = (const uint16_t *) x;
< // for (int i = 0; i < n; ++i) {
< // y[i] = ggml_table_gelu_quick_f16[i16[i]];
< // }
< //}
<
< #ifdef GGML_GELU_QUICK_FP16
< inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
< uint16_t t;
< for (int i = 0; i < n; ++i) {
< ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
< memcpy(&t, &fp16, sizeof(uint16_t));
< y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
< }
< }
< #else
< inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = ggml_gelu_quick_f32(x[i]);
< }
< }
< #endif
<
< inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< float v = GGML_FP16_TO_FP32(x[i]);
< y[i] = GGML_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v))));
< }
< }
<
< // Sigmoid Linear Unit (SiLU) function
< inline static float ggml_silu_f32(float x) {
< return x/(1.0f + expf(-x));
< }
< inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
< float v = GGML_FP16_TO_FP32(x);
< return GGML_FP32_TO_FP16(v/(1.0f + expf(-v)));
< }
<
< #if __FINITE_MATH_ONLY__
< #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
< #error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
< #endif
<
< #if defined(__ARM_NEON) && defined(__aarch64__)
<
< // adapted from arm limited optimized routine
< // the maximum error is 1.45358 plus 0.5 ulps
< // numbers above 88.38 will flush to infinity
< // numbers beneath -103.97 will flush to zero
< inline static float32x4_t ggml_v_expf(float32x4_t x) {
< const float32x4_t r = vdupq_n_f32(0x1.8p23f);
< const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
< const float32x4_t n = vsubq_f32(z, r);
< const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
< vdupq_n_f32(0x1.7f7d1cp-20f));
< const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
< const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
< const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
< const float32x4_t u = vmulq_f32(b, b);
< const float32x4_t j = vfmaq_f32(
< vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
< vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
< vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
< if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
< return vfmaq_f32(k, j, k);
< const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
< const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
< const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
< return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
< vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
< }
<
< // computes silu x/(1+exp(-x)) in single precision vector
< inline static float32x4_t ggml_v_silu(float32x4_t x) {
< const float32x4_t one = vdupq_n_f32(1.0f);
< const float32x4_t zero = vdupq_n_f32(0.0f);
< const float32x4_t neg_x = vsubq_f32(zero, x);
< const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
< const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
< return vdivq_f32(x, one_plus_exp_neg_x);
< }
<
< #elif defined(__AVX512F__) && defined(__AVX512DQ__)
<
< // adapted from arm limited optimized routine
< // the maximum error is 1.45358 plus 0.5 ulps
< // numbers above 88.38 will flush to infinity
< // numbers beneath -103.97 will flush to zero
< inline static __m512 ggml_v_expf(__m512 x) {
< const __m512 r = _mm512_set1_ps(0x1.8p23f);
< const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
< const __m512 n = _mm512_sub_ps(z, r);
< const __m512 b =
< _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
< _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
< const __mmask16 d =
< _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
< const __m512 u = _mm512_mul_ps(b, b);
< const __m512 j = _mm512_fmadd_ps(
< _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
< _mm512_set1_ps(0x1.573e2ep-5f)),
< u,
< _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
< _mm512_set1_ps(0x1.fffdb6p-2f))),
< u,
< _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
< const __m512 res = _mm512_scalef_ps(j, n);
< if (_mm512_kortestz(d, d))
< return res;
< const __m512 zero = _mm512_setzero_ps();
< const __m512 alt = _mm512_mask_blend_ps(
< _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
< return _mm512_mask_blend_ps(d, res, alt);
< }
<
< // computes silu x/(1+exp(-x)) in single precision vector
< inline static __m512 ggml_v_silu(__m512 x) {
< const __m512 one = _mm512_set1_ps(1);
< const __m512 zero = _mm512_setzero_ps();
< const __m512 neg_x = _mm512_sub_ps(zero, x);
< const __m512 exp_neg_x = ggml_v_expf(neg_x);
< const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
< return _mm512_div_ps(x, one_plus_exp_neg_x);
< }
<
< #elif defined(__AVX2__) && defined(__FMA__)
<
< // adapted from arm limited optimized routine
< // the maximum error is 1.45358 plus 0.5 ulps
< // numbers above 88.38 will flush to infinity
< // numbers beneath -103.97 will flush to zero
< inline static __m256 ggml_v_expf(__m256 x) {
< const __m256 r = _mm256_set1_ps(0x1.8p23f);
< const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
< const __m256 n = _mm256_sub_ps(z, r);
< const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
< _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
< const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
< const __m256 k = _mm256_castsi256_ps(
< _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
< const __m256i c = _mm256_castps_si256(
< _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
< _mm256_set1_ps(126), _CMP_GT_OQ));
< const __m256 u = _mm256_mul_ps(b, b);
< const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
< _mm256_set1_ps(0x1.573e2ep-5f)), u,
< _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
< _mm256_set1_ps(0x1.fffdb6p-2f))),
< u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
< if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
< return _mm256_fmadd_ps(j, k, k);
< const __m256i g = _mm256_and_si256(
< _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
< _mm256_set1_epi32(0x82000000u));
< const __m256 s1 =
< _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
< const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
< const __m256i d = _mm256_castps_si256(
< _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
< _mm256_set1_ps(192), _CMP_GT_OQ));
< return _mm256_or_ps(
< _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
< _mm256_andnot_ps(
< _mm256_castsi256_ps(d),
< _mm256_or_ps(
< _mm256_and_ps(_mm256_castsi256_ps(c),
< _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
< _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
< }
<
< // computes silu x/(1+exp(-x)) in single precision vector
< inline static __m256 ggml_v_silu(__m256 x) {
< const __m256 one = _mm256_set1_ps(1);
< const __m256 zero = _mm256_setzero_ps();
< const __m256 neg_x = _mm256_sub_ps(zero, x);
< const __m256 exp_neg_x = ggml_v_expf(neg_x);
< const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
< return _mm256_div_ps(x, one_plus_exp_neg_x);
< }
<
< #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
<
< #if defined(__FMA__)
< #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
< #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
< #else
< #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
< #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
< #endif
<
< // adapted from arm limited optimized routine
< // the maximum error is 1.45358 plus 0.5 ulps
< // numbers above 88.38 will flush to infinity
< // numbers beneath -103.97 will flush to zero
< inline static __m128 ggml_v_expf(__m128 x) {
< const __m128 r = _mm_set1_ps(0x1.8p23f);
< const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
< const __m128 n = _mm_sub_ps(z, r);
< const __m128 b =
< NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
< const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
< const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
< const __m128i c =
< _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
< const __m128 u = _mm_mul_ps(b, b);
< const __m128 j =
< MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
< MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
< u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
< if (!_mm_movemask_epi8(c))
< return MADD128(j, k, k);
< const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
< _mm_set1_epi32(0x82000000u));
< const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
< const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
< const __m128i d =
< _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
< return _mm_or_ps(
< _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
< _mm_andnot_ps(_mm_castsi128_ps(d),
< _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
< _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
< }
<
< // computes silu x/(1+exp(-x)) in single precision vector
< inline static __m128 ggml_v_silu(__m128 x) {
< const __m128 one = _mm_set1_ps(1);
< const __m128 zero = _mm_setzero_ps();
< const __m128 neg_x = _mm_sub_ps(zero, x);
< const __m128 exp_neg_x = ggml_v_expf(neg_x);
< const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
< return _mm_div_ps(x, one_plus_exp_neg_x);
< }
<
< #endif // __ARM_NEON / __AVX2__ / __SSE2__
<
< static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
< int i = 0;
< #if defined(__AVX512F__) && defined(__AVX512DQ__)
< for (; i + 15 < n; i += 16) {
< _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
< }
< #elif defined(__AVX2__) && defined(__FMA__)
< for (; i + 7 < n; i += 8) {
< _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
< }
< #elif defined(__SSE2__)
< for (; i + 3 < n; i += 4) {
< _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
< }
< #elif defined(__ARM_NEON) && defined(__aarch64__)
< for (; i + 3 < n; i += 4) {
< vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
< }
< #endif
< for (; i < n; ++i) {
< y[i] = ggml_silu_f32(x[i]);
< }
< }
<
< inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
< for (int i = 0; i < n; ++i) {
< y[i] = ggml_silu_f16(x[i]);
< }
< }
<
< static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
< int i = 0;
< ggml_float sum = 0;
< #if defined(__AVX512F__) && defined(__AVX512DQ__)
< for (; i + 15 < n; i += 16) {
< __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
< _mm512_set1_ps(max)));
< _mm512_storeu_ps(y + i, val);
< sum += (ggml_float)_mm512_reduce_add_ps(val);
< }
< #elif defined(__AVX2__) && defined(__FMA__)
< for (; i + 7 < n; i += 8) {
< __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
< _mm256_set1_ps(max)));
< _mm256_storeu_ps(y + i, val);
< __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
< _mm256_castps256_ps128(val));
< val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
< val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
< sum += (ggml_float)_mm_cvtss_f32(val2);
< }
< #elif defined(__SSE2__)
< for (; i + 3 < n; i += 4) {
< __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
< _mm_set1_ps(max)));
< _mm_storeu_ps(y + i, val);
< #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
< val = _mm_add_ps(val, _mm_movehl_ps(val, val));
< val = _mm_add_ss(val, _mm_movehdup_ps(val));
< #else
< __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
< val = _mm_add_ps(val, tmp);
< tmp = _mm_movehl_ps(tmp, val);
< val = _mm_add_ss(val, tmp);
< #endif
< sum += (ggml_float)_mm_cvtss_f32(val);
< }
< #elif defined(__ARM_NEON) && defined(__aarch64__)
< for (; i + 3 < n; i += 4) {
< float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
< vdupq_n_f32(max)));
< vst1q_f32(y + i, val);
< sum += (ggml_float)vaddvq_f32(val);
< }
< #endif
< for (; i < n; ++i) {
< float val = expf(x[i] - max);
< sum += (ggml_float)val;
< y[i] = val;
< }
< return sum;
< }
<
< static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
< // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
<
< int i = 0;
< ggml_float sum = 0;
< for (; i < n; ++i) {
< float val = x[i] - max;
< y[i] = val;
< sum += (ggml_float)expf(val);
< }
< return sum = (ggml_float)logf(sum);
< }
<
< inline static float ggml_silu_backward_f32(float x, float dy) {
< const float s = 1.0f/(1.0f + expf(-x));
< return dy*s*(1.0f + x*(1.0f - s));
< }
<
< inline static ggml_fp16_t ggml_silu_backward_f16(ggml_fp16_t x, ggml_fp16_t dy) {
< const float v = GGML_FP16_TO_FP32(x);
< const float s = 1.0f/(1.0f + expf(-v));
< return GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s)));
< }
<
< inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
< for (int i = 0; i < n; ++i) {
< dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
< }
< }
<
< inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, const ggml_fp16_t * x, const ggml_fp16_t * dy) {
< for (int i = 0; i < n; ++i) {
< dx[i] = ggml_silu_backward_f16(x[i], dy[i]);
< }
< }
<
< inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
< #ifndef GGML_USE_ACCELERATE
< ggml_float sum = 0.0;
< for (int i = 0; i < n; ++i) {
< sum += (ggml_float)x[i];
< }
< *s = sum;
< #else
< vDSP_sve(x, 1, s, n);
< #endif
< }
<
< inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
< ggml_float sum = 0.0;
< for (int i = 0; i < n; ++i) {
< sum += (ggml_float)x[i];
< }
< *s = sum;
< }
<
< inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
< float sum = 0.0f;
< for (int i = 0; i < n; ++i) {
< sum += GGML_FP16_TO_FP32(x[i]);
< }
< *s = sum;
< }
<
< inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
< float sum = 0.0f;
< for (int i = 0; i < n; ++i) {
< sum += GGML_BF16_TO_FP32(x[i]);
< }
< *s = sum;
< }
<
< inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
< #ifndef GGML_USE_ACCELERATE
< float max = -INFINITY;
< for (int i = 0; i < n; ++i) {
< max = MAX(max, x[i]);
< }
< *s = max;
< #else
< vDSP_maxv(x, 1, s, n);
< #endif
< }
<
< inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
< ggml_vec_norm_f32(n, s, x);
< *s = 1.f/(*s);
< }
<
< inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
< float max = -INFINITY;
< int idx = 0;
< for (int i = 0; i < n; ++i) {
< max = MAX(max, x[i]);
< if (max == x[i]) { idx = i; }
< }
< *s = idx;
< }
<
3098,6652d1173
< // ggml_compute_forward_dup
<
< static void ggml_compute_forward_dup_same_cont(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
< GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
< GGML_ASSERT(src0->type == dst->type);
<
< const size_t nb0 = ggml_type_size(src0->type);
<
< const int ith = params->ith; // thread index
< const int nth = params->nth; // number of threads
<
< // parallelize by blocks
< const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
< const int dr = (nk + nth - 1) / nth;
< const int k0 = dr * ith;
< const int k1 = MIN(k0 + dr, nk);
<
< if (k0 < k1) {
< memcpy(
< ((char *) dst->data + k0*nb0),
< ((char *) src0->data + k0*nb0),
< (k1 - k0) * nb0);
< }
< }
<
< static void ggml_compute_forward_dup_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const int ith = params->ith; // thread index
< const int nth = params->nth; // number of threads
<
< // parallelize by rows
< const int nr = ne01;
< // number of rows per thread
< const int dr = (nr + nth - 1) / nth;
< // row range for this thread
< const int ir0 = dr * ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< if (src0->type == dst->type &&
< ne00 == ne0 &&
< nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
< // copy by rows
< const size_t rs = ne00*nb00;
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< memcpy(
< ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
< ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
< rs);
< }
< }
< }
< return;
< }
<
< // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
<
< if (ggml_is_contiguous(dst)) {
< if (nb00 == sizeof(ggml_fp16_t)) {
< if (dst->type == GGML_TYPE_F16) {
< size_t id = 0;
< const size_t rs = ne00 * nb00;
< char * dst_ptr = (char *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
< memcpy(dst_ptr + id, src0_ptr, rs);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_F32) {
< size_t id = 0;
< float * dst_ptr = (float *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
< for (int i00 = 0; i00 < ne00; i00++) {
< dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
< ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
< float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
<
< size_t id = 0;
< size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
< char * dst_ptr = (char *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
<
< for (int i00 = 0; i00 < ne00; i00++) {
< src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
< }
<
< quantize_row_q(src0_f32, dst_ptr + id, ne00);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< } else {
< //printf("%s: this is not optimal - fix me\n", __func__);
<
< if (dst->type == GGML_TYPE_F32) {
< size_t id = 0;
< float * dst_ptr = (float *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_F16) {
< size_t id = 0;
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = *src0_ptr;
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< }
< return;
< }
<
< // dst counters
< int64_t i10 = 0;
< int64_t i11 = 0;
< int64_t i12 = 0;
< int64_t i13 = 0;
<
< if (dst->type == GGML_TYPE_F16) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
<
< if (++i10 == ne00) {
< i10 = 0;
< if (++i11 == ne01) {
< i11 = 0;
< if (++i12 == ne02) {
< i12 = 0;
< if (++i13 == ne03) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else if (dst->type == GGML_TYPE_F32) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
<
< if (++i10 == ne0) {
< i10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< }
<
< static void ggml_compute_forward_dup_bf16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const int ith = params->ith; // thread index
< const int nth = params->nth; // number of threads
<
< // parallelize by rows
< const int nr = ne01;
< // number of rows per thread
< const int dr = (nr + nth - 1) / nth;
< // row range for this thread
< const int ir0 = dr * ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< if (src0->type == dst->type &&
< ne00 == ne0 &&
< nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
< // copy by rows
< const size_t rs = ne00*nb00;
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< memcpy(
< ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
< ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
< rs);
< }
< }
< }
< return;
< }
<
< // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
<
< if (ggml_is_contiguous(dst)) {
< if (nb00 == sizeof(ggml_bf16_t)) {
< if (dst->type == GGML_TYPE_BF16) {
< size_t id = 0;
< const size_t rs = ne00 * nb00;
< char * dst_ptr = (char *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
< memcpy(dst_ptr + id, src0_ptr, rs);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_F16) {
< size_t id = 0;
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
< for (int i00 = 0; i00 < ne00; i00++) {
< dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_F32) {
< size_t id = 0;
< float * dst_ptr = (float *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
< for (int i00 = 0; i00 < ne00; i00++) {
< dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
< ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
< float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
<
< size_t id = 0;
< size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
< char * dst_ptr = (char *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
<
< for (int i00 = 0; i00 < ne00; i00++) {
< src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
< }
<
< quantize_row_q(src0_f32, dst_ptr + id, ne00);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< } else {
< //printf("%s: this is not optimal - fix me\n", __func__);
<
< if (dst->type == GGML_TYPE_F32) {
< size_t id = 0;
< float * dst_ptr = (float *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_BF16) {
< size_t id = 0;
< ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = *src0_ptr;
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_F16) {
< size_t id = 0;
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< }
< return;
< }
<
< // dst counters
< int64_t i10 = 0;
< int64_t i11 = 0;
< int64_t i12 = 0;
< int64_t i13 = 0;
<
< if (dst->type == GGML_TYPE_BF16) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
<
< if (++i10 == ne00) {
< i10 = 0;
< if (++i11 == ne01) {
< i11 = 0;
< if (++i12 == ne02) {
< i12 = 0;
< if (++i13 == ne03) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else if (dst->type == GGML_TYPE_F16) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
<
< if (++i10 == ne0) {
< i10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else if (dst->type == GGML_TYPE_F32) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
<
< if (++i10 == ne0) {
< i10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< }
<
< static void ggml_compute_forward_dup_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const int ith = params->ith; // thread index
< const int nth = params->nth; // number of threads
<
< // parallelize by rows
< const int nr = ne01;
< // number of rows per thread
< const int dr = (nr + nth - 1) / nth;
< // row range for this thread
< const int ir0 = dr * ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< if (src0->type == dst->type &&
< ne00 == ne0 &&
< nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
< // copy by rows
< const size_t rs = ne00*nb00;
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< memcpy(
< ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
< ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
< rs);
< }
< }
< }
< return;
< }
<
< if (ggml_is_contiguous(dst)) {
< // TODO: simplify
< if (nb00 == sizeof(float)) {
< if (dst->type == GGML_TYPE_F32) {
< size_t id = 0;
< const size_t rs = ne00 * nb00;
< char * dst_ptr = (char *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
< memcpy(dst_ptr + id, src0_ptr, rs);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
< ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
<
< size_t id = 0;
< size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
< char * dst_ptr = (char *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
< quantize_row_q(src0_ptr, dst_ptr + id, ne00);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< } else {
< //printf("%s: this is not optimal - fix me\n", __func__);
<
< if (dst->type == GGML_TYPE_F32) {
< size_t id = 0;
< float * dst_ptr = (float *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = *src0_ptr;
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_F16) {
< size_t id = 0;
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else if (dst->type == GGML_TYPE_BF16) {
< size_t id = 0;
< ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
<
< for (int i03 = 0; i03 < ne03; i03++) {
< for (int i02 = 0; i02 < ne02; i02++) {
< id += ne00 * ir0;
< for (int i01 = ir0; i01 < ir1; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
<
< dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
< id++;
< }
< }
< id += ne00 * (ne01 - ir1);
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< }
<
< return;
< }
<
< // dst counters
<
< int64_t i10 = 0;
< int64_t i11 = 0;
< int64_t i12 = 0;
< int64_t i13 = 0;
<
< if (dst->type == GGML_TYPE_F32) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< memcpy(dst_ptr, src0_ptr, sizeof(float));
<
< if (++i10 == ne0) {
< i10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else if (dst->type == GGML_TYPE_F16) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
<
< if (++i10 == ne0) {
< i10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else if (dst->type == GGML_TYPE_BF16) {
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< i10 += ne00 * ir0;
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
<
< if (++i10 == ne0) {
< i10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< i10 += ne00 * (ne01 - ir1);
< while (i10 >= ne0) {
< i10 -= ne0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< } else {
< GGML_ABORT("fatal error"); // TODO: implement
< }
< }
<
< // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
< static void ggml_compute_forward_dup_bytes(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
< GGML_ASSERT(src0->type == dst->type);
<
< GGML_TENSOR_UNARY_OP_LOCALS;
<
< if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
< ggml_compute_forward_dup_same_cont(params, dst);
< return;
< }
<
< const size_t type_size = ggml_type_size(src0->type);
<
< const int ith = params->ith; // thread index
< const int nth = params->nth; // number of threads
<
< // parallelize by rows
< const int nr = ne01;
< // number of rows per thread
< const int dr = (nr + nth - 1) / nth;
< // row range for this thread
< const int ir0 = dr * ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< if (src0->type == dst->type &&
< ggml_are_same_shape(src0, dst) &&
< nb00 == type_size && nb0 == type_size) {
< // copy by rows
< const size_t rs = ggml_row_size(src0->type, ne00);
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< memcpy(
< ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
< ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
< rs);
< }
< }
< }
< return;
< }
<
< if (ggml_is_contiguous(dst)) {
< size_t id = 0;
< char * dst_ptr = (char *) dst->data;
< const size_t rs = ne00 * type_size;
<
< if (nb00 == type_size) {
< // src0 is contigous on first dimension, copy by rows
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
< memcpy(dst_ptr + id, src0_ptr, rs);
< id += rs;
< }
< id += rs * (ne01 - ir1);
< }
< }
< } else {
< //printf("%s: this is not optimal - fix me\n", __func__);
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< id += rs * ir0;
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
< memcpy(dst_ptr + id, src0_ptr, type_size);
<
< id += type_size;
< }
< }
< id += rs * (ne01 - ir1);
< }
< }
< }
<
< return;
< }
<
< // dst counters
< int64_t k10 = 0;
< int64_t i11 = 0;
< int64_t i12 = 0;
< int64_t i13 = 0;
<
< // number of blocks in a row
< const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
< const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< k10 += nk00 * ir0;
< while (k10 >= nk0) {
< k10 -= nk0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< for (int64_t i01 = ir0; i01 < ir1; i01++) {
< for (int64_t k00 = 0; k00 < nk00; k00++) {
< const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
<
< memcpy(dst_ptr, src0_ptr, type_size);
<
< if (++k10 == nk0) {
< k10 = 0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< k10 += nk00 * (ne01 - ir1);
< while (k10 >= nk0) {
< k10 -= nk0;
< if (++i11 == ne1) {
< i11 = 0;
< if (++i12 == ne2) {
< i12 = 0;
< if (++i13 == ne3) {
< i13 = 0;
< }
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_dup_q(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const enum ggml_type type = src0->type;
< ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
<
< size_t qk = ggml_blck_size(type);
< const int64_t nr = ggml_nelements(src1) / qk;
<
< // destination must be contiguous in the first dimension
< GGML_ASSERT(nb10 == ggml_type_size(dst->type));
< // must either have first dimension large enough to hold a row, or fully contiguous
< GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t ir = ir0; ir < ir1; ++ir) {
<
< uint32_t i = ir * qk;
<
< const int64_t i03 = i/(ne00 * ne01 * ne02);
< const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
< const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
< const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
< const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
<
< const int64_t i13 = i/(ne10 * ne11 * ne12);
< const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
< const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
< const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
< const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
<
< dequantize_row_q(
< (const void *) ((char *) src0->data + x_offset),
< (float *) ((char *) dst->data + dst_offset), qk);
< }
< }
<
< static void ggml_compute_forward_dup(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (src0->type == dst->type) {
< ggml_compute_forward_dup_bytes(params, dst);
< return;
< }
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_dup_f16(params, dst);
< } break;
< case GGML_TYPE_BF16:
< {
< ggml_compute_forward_dup_bf16(params, dst);
< } break;
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_dup_f32(params, dst);
< } break;
< default:
< {
< if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
< ggml_compute_forward_dup_q(params, dst);
< break;
< }
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_add
<
< static void ggml_compute_forward_add_q_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const enum ggml_type type = src0->type;
< const enum ggml_type dtype = dst->type;
< ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
< ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
<
< // we don't support permuted src0 or src1
< GGML_ASSERT(nb00 == ggml_type_size(type));
< GGML_ASSERT(nb10 == sizeof(float));
<
< // dst cannot be transposed or permuted
< GGML_ASSERT(nb0 <= nb1);
< GGML_ASSERT(nb1 <= nb2);
< GGML_ASSERT(nb2 <= nb3);
<
< GGML_ASSERT(ggml_is_quantized(src0->type));
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 indices
< const int i03 = ir/(ne02*ne01);
< const int i02 = (ir - i03*ne02*ne01)/ne01;
< const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
<
< // src1 and dst are same shape as src0 => same indices
< const int i13 = i03;
< const int i12 = i02;
< const int i11 = i01;
<
< const int i3 = i03;
< const int i2 = i02;
< const int i1 = i01;
<
< void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
< float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
< void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
<
< assert(ne00 % 32 == 0);
<
< // unquantize row from src0 to temp buffer
< dequantize_row_q(src0_row, wdata, ne00);
< // add src1
< ggml_vec_acc_f32(ne00, wdata, src1_row);
< // quantize row to dst
< if (quantize_row_q != NULL) {
< quantize_row_q(wdata, dst_row, ne00);
< } else {
< memcpy(dst_row, wdata, ne0*nb0);
< }
< }
< }
<
< static void ggml_compute_forward_add(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< case GGML_TYPE_F16:
< case GGML_TYPE_BF16:
< {
< ggml_compute_forward_add_non_quantized(params, dst);
< } break;
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< {
< ggml_compute_forward_add_q_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_add1
<
< static void ggml_compute_forward_add1_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_scalar(src1));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT( nb0 == sizeof(float));
< GGML_ASSERT(nb00 == sizeof(float));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are same shape => same indices
< const int i3 = ir/(ne2*ne1);
< const int i2 = (ir - i3*ne2*ne1)/ne1;
< const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< #ifdef GGML_USE_ACCELERATE
< UNUSED(ggml_vec_add1_f32);
<
< vDSP_vadd(
< (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
< (float *) ((char *) src1->data), 0,
< (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
< ne0);
< #else
< ggml_vec_add1_f32(ne0,
< (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
< (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
< *(float *) src1->data);
< #endif
< }
< }
<
< static void ggml_compute_forward_add1_f16_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_scalar(src1));
<
< // scalar to add
< const float v = *(float *) src1->data;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(src0->type == GGML_TYPE_F16);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT(dst->type == GGML_TYPE_F16);
<
< GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are same shape => same indices
< const int i3 = ir/(ne2*ne1);
< const int i2 = (ir - i3*ne2*ne1)/ne1;
< const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
< ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
< for (int i = 0; i < ne0; i++) {
< dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
< }
< }
< }
<
< static void ggml_compute_forward_add1_f16_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_scalar(src1));
<
< // scalar to add
< const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(src0->type == GGML_TYPE_F16);
< GGML_ASSERT(src1->type == GGML_TYPE_F16);
< GGML_ASSERT(dst->type == GGML_TYPE_F16);
<
< GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are same shape => same indices
< const int i3 = ir/(ne2*ne1);
< const int i2 = (ir - i3*ne2*ne1)/ne1;
< const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
< ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
< for (int i = 0; i < ne0; i++) {
< dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
< }
< }
< }
<
< static void ggml_compute_forward_add1_q_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_scalar(src1));
<
< // scalar to add
< const float v = *(float *) src1->data;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const enum ggml_type type = src0->type;
< ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
< ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
<
< // we don't support permuted src0
< GGML_ASSERT(nb00 == ggml_type_size(type));
<
< // dst cannot be transposed or permuted
< GGML_ASSERT(nb0 <= nb1);
< GGML_ASSERT(nb1 <= nb2);
< GGML_ASSERT(nb2 <= nb3);
<
< GGML_ASSERT(ggml_is_quantized(src0->type));
< GGML_ASSERT(dst->type == src0->type);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are same shape => same indices
< const int i3 = ir/(ne2*ne1);
< const int i2 = (ir - i3*ne2*ne1)/ne1;
< const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
< void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
<
< assert(ne0 % 32 == 0);
<
< // unquantize row from src0 to temp buffer
< dequantize_row_q(src0_row, wdata, ne0);
< // add src1
< ggml_vec_acc1_f32(ne0, wdata, v);
< // quantize row to dst
< quantize_row_q(wdata, dst_row, ne0);
< }
< }
<
< static void ggml_compute_forward_add1_bf16_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_scalar(src1));
<
< // scalar to add
< const float v = *(float *) src1->data;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(src0->type == GGML_TYPE_BF16);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT(dst->type == GGML_TYPE_BF16);
<
< GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
< GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are same shape => same indices
< const int i3 = ir/(ne2*ne1);
< const int i2 = (ir - i3*ne2*ne1)/ne1;
< const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
< ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
< for (int i = 0; i < ne0; i++) {
< dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
< }
< }
< }
<
< static void ggml_compute_forward_add1_bf16_bf16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_scalar(src1));
<
< // scalar to add
< const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(src0->type == GGML_TYPE_BF16);
< GGML_ASSERT(src1->type == GGML_TYPE_BF16);
< GGML_ASSERT(dst->type == GGML_TYPE_BF16);
<
< GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
< GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are same shape => same indices
< const int i3 = ir/(ne2*ne1);
< const int i2 = (ir - i3*ne2*ne1)/ne1;
< const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
< ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
< for (int i = 0; i < ne0; i++) {
< dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
< }
< }
< }
<
< static void ggml_compute_forward_add1(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_add1_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< if (src1->type == GGML_TYPE_F16) {
< ggml_compute_forward_add1_f16_f16(params, dst);
< }
< else if (src1->type == GGML_TYPE_F32) {
< ggml_compute_forward_add1_f16_f32(params, dst);
< }
< else {
< GGML_ABORT("fatal error");
< }
< } break;
< case GGML_TYPE_BF16:
< {
< if (src1->type == GGML_TYPE_BF16) {
< ggml_compute_forward_add1_bf16_bf16(params, dst);
< }
< else if (src1->type == GGML_TYPE_F32) {
< ggml_compute_forward_add1_bf16_f32(params, dst);
< }
< else {
< GGML_ABORT("fatal error");
< }
< } break;
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q8_1:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< {
< ggml_compute_forward_add1_q_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_acc
<
< static void ggml_compute_forward_acc_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
<
< // view src0 and dst with these strides and data offset inbytes during acc
< // nb0 is implicitly element_size because src0 and dst are contiguous
< size_t nb1 = ((int32_t *) dst->op_params)[0];
< size_t nb2 = ((int32_t *) dst->op_params)[1];
< size_t nb3 = ((int32_t *) dst->op_params)[2];
< size_t offset = ((int32_t *) dst->op_params)[3];
< bool inplace = (bool) ((int32_t *) dst->op_params)[4];
<
< if (!inplace) {
< if (params->ith == 0) {
< // memcpy needs to be synchronized across threads to avoid race conditions.
< // => do it in INIT phase
< memcpy(
< ((char *) dst->data),
< ((char *) src0->data),
< ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
< }
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src1);
< const int nc = src1->ne[0];
<
< GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
< GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
<
< // src0 and dst as viewed during acc
< const size_t nb0 = ggml_element_size(src0);
<
< const size_t nb00 = nb0;
< const size_t nb01 = nb1;
< const size_t nb02 = nb2;
< const size_t nb03 = nb3;
<
< GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
< GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
<
< GGML_ASSERT(nb10 == sizeof(float));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are viewed with shape of src1 and offset
< // => same indices
< const int i3 = ir/(ne12*ne11);
< const int i2 = (ir - i3*ne12*ne11)/ne11;
< const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
<
< #ifdef GGML_USE_ACCELERATE
< vDSP_vadd(
< (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
< (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
< (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
< #else
< ggml_vec_add_f32(nc,
< (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
< (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
< (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
< #endif
< }
< }
<
< static void ggml_compute_forward_acc(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_acc_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< case GGML_TYPE_BF16:
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q8_1:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_sum
<
< static void ggml_compute_forward_sum_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_scalar(dst));
< assert(src0->nb[0] == sizeof(float));
<
< GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
< GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
<
< ggml_float sum = 0;
< ggml_float row_sum = 0;
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< ggml_vec_sum_f32_ggf(ne00,
< &row_sum,
< (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
< sum += row_sum;
< }
< }
< }
< ((float *) dst->data)[0] = sum;
< }
<
< static void ggml_compute_forward_sum_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_scalar(dst));
<
< assert(src0->nb[0] == sizeof(ggml_fp16_t));
<
< GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
< GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
<
< float sum = 0;
< float row_sum = 0;
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< ggml_vec_sum_f16_ggf(ne00,
< &row_sum,
< (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
< sum += row_sum;
< }
< }
< }
< ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
< }
<
< static void ggml_compute_forward_sum_bf16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_scalar(dst));
<
< assert(src0->nb[0] == sizeof(ggml_bf16_t));
<
< GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
< GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
<
< float sum = 0;
< float row_sum = 0;
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< ggml_vec_sum_bf16_ggf(ne00,
< &row_sum,
< (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
< sum += row_sum;
< }
< }
< }
< ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
< }
<
< static void ggml_compute_forward_sum(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_sum_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_sum_f16(params, dst);
< } break;
< case GGML_TYPE_BF16:
< {
< ggml_compute_forward_sum_bf16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_sum_rows
<
< static void ggml_compute_forward_sum_rows_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
< GGML_ASSERT(dst->nb[0] == sizeof(float));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(ne0 == 1);
< GGML_ASSERT(ne1 == ne01);
< GGML_ASSERT(ne2 == ne02);
< GGML_ASSERT(ne3 == ne03);
<
< for (int64_t i3 = 0; i3 < ne03; i3++) {
< for (int64_t i2 = 0; i2 < ne02; i2++) {
< for (int64_t i1 = 0; i1 < ne01; i1++) {
< float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
< float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
< float row_sum = 0;
< ggml_vec_sum_f32(ne00, &row_sum, src_row);
< dst_row[0] = row_sum;
< }
< }
< }
< }
<
< static void ggml_compute_forward_sum_rows(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_sum_rows_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_mean
<
< static void ggml_compute_forward_mean_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(src0->nb[0] == sizeof(float));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< assert(ne0 == 1);
< assert(ne1 == ne01);
< assert(ne2 == ne02);
< assert(ne3 == ne03);
<
< UNUSED(ne0);
< UNUSED(ne1);
< UNUSED(ne2);
< UNUSED(ne3);
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< ggml_vec_sum_f32(ne00,
< (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
< (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
<
< *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
< }
< }
< }
< }
<
< static void ggml_compute_forward_mean(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_mean_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_argmax
<
< static void ggml_compute_forward_argmax_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(src0->nb[0] == sizeof(float));
< assert(dst->nb[0] == sizeof(float));
<
< const int64_t ne00 = src0->ne[0];
< const int64_t ne01 = src0->ne[1];
<
< const size_t nb01 = src0->nb[1];
< const size_t nb0 = dst->nb[0];
<
< for (int64_t i1 = 0; i1 < ne01; i1++) {
< float * src = (float *) ((char *) src0->data + i1*nb01);
< int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
< int v = 0;
< ggml_vec_argmax_f32(ne00, &v, src);
< dst_[0] = v;
< }
< }
<
< static void ggml_compute_forward_argmax(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_argmax_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_count_equal
<
< static void ggml_compute_forward_count_equal_i32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS;
<
< GGML_ASSERT(src0->type == GGML_TYPE_I32);
< GGML_ASSERT(src1->type == GGML_TYPE_I32);
< GGML_ASSERT(ggml_are_same_shape(src0, src1));
< GGML_ASSERT(ggml_is_scalar(dst));
< GGML_ASSERT(dst->type == GGML_TYPE_I64);
<
< const int64_t nr = ggml_nrows(src0);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< int64_t * sums = (int64_t *) params->wdata;
< int64_t sum_thread = 0;
<
< // rows per thread
< const int64_t dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int64_t ir0 = dr*ith;
< const int64_t ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t ir = ir0; ir < ir1; ++ir) {
< const int64_t i03 = ir / (ne02*ne01);
< const int64_t i02 = (ir - i03*ne03) / ne01;
< const int64_t i01 = ir - i03*ne03 - i02*ne02;
<
< const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
< const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
<
< for (int64_t i00 = 0; i00 < ne00; ++i00) {
< const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
< const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
<
< sum_thread += val0 == val1;
< }
< }
< if (ith != 0) {
< sums[ith] = sum_thread;
< }
< ggml_barrier(params->threadpool);
<
< if (ith != 0) {
< return;
< }
<
< for (int ith_other = 1; ith_other < nth; ++ith_other) {
< sum_thread += sums[ith_other];
< }
< *((int64_t *) dst->data) = sum_thread;
< }
<
< static void ggml_compute_forward_count_equal(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_I32:
< {
< ggml_compute_forward_count_equal_i32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_repeat
<
< static void ggml_compute_forward_repeat_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< GGML_ASSERT(ggml_can_repeat(src0, dst));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< // guaranteed to be an integer due to the check in ggml_can_repeat
< const int nr0 = (int)(ne0/ne00);
< const int nr1 = (int)(ne1/ne01);
< const int nr2 = (int)(ne2/ne02);
< const int nr3 = (int)(ne3/ne03);
<
< // TODO: support for transposed / permuted tensors
< GGML_ASSERT(nb0 == sizeof(float));
< GGML_ASSERT(nb00 == sizeof(float));
<
< // TODO: maybe this is not optimal?
< for (int i3 = 0; i3 < nr3; i3++) {
< for (int k3 = 0; k3 < ne03; k3++) {
< for (int i2 = 0; i2 < nr2; i2++) {
< for (int k2 = 0; k2 < ne02; k2++) {
< for (int i1 = 0; i1 < nr1; i1++) {
< for (int k1 = 0; k1 < ne01; k1++) {
< for (int i0 = 0; i0 < nr0; i0++) {
< ggml_vec_cpy_f32(ne00,
< (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
< (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
< }
< }
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_repeat_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< GGML_ASSERT(ggml_can_repeat(src0, dst));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< // guaranteed to be an integer due to the check in ggml_can_repeat
< const int nr0 = (int)(ne0/ne00);
< const int nr1 = (int)(ne1/ne01);
< const int nr2 = (int)(ne2/ne02);
< const int nr3 = (int)(ne3/ne03);
<
< // TODO: support for transposed / permuted tensors
< GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
<
< // TODO: maybe this is not optimal?
< for (int i3 = 0; i3 < nr3; i3++) {
< for (int k3 = 0; k3 < ne03; k3++) {
< for (int i2 = 0; i2 < nr2; i2++) {
< for (int k2 = 0; k2 < ne02; k2++) {
< for (int i1 = 0; i1 < nr1; i1++) {
< for (int k1 = 0; k1 < ne01; k1++) {
< for (int i0 = 0; i0 < nr0; i0++) {
< ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
< ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
< // ggml_vec_cpy_f16(ne00, y, x)
< for (int i = 0; i < ne00; ++i) {
< y[i] = x[i];
< }
< }
< }
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_repeat(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< case GGML_TYPE_BF16:
< case GGML_TYPE_I16:
< {
< ggml_compute_forward_repeat_f16(params, dst);
< } break;
< case GGML_TYPE_F32:
< case GGML_TYPE_I32:
< {
< ggml_compute_forward_repeat_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_repeat_back
<
< static void ggml_compute_forward_repeat_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< GGML_ASSERT(ggml_can_repeat(dst, src0));
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< // guaranteed to be an integer due to the check in ggml_can_repeat
< const int nr0 = (int)(ne00/ne0);
< const int nr1 = (int)(ne01/ne1);
< const int nr2 = (int)(ne02/ne2);
< const int nr3 = (int)(ne03/ne3);
<
< // TODO: support for transposed / permuted tensors
< GGML_ASSERT(nb0 == sizeof(float));
< GGML_ASSERT(nb00 == sizeof(float));
<
< if (ggml_is_contiguous(dst)) {
< ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
< } else {
< for (int k3 = 0; k3 < ne3; k3++) {
< for (int k2 = 0; k2 < ne2; k2++) {
< for (int k1 = 0; k1 < ne1; k1++) {
< ggml_vec_set_f32(ne0,
< (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
< 0);
< }
< }
< }
< }
<
< // TODO: maybe this is not optimal?
< for (int i3 = 0; i3 < nr3; i3++) {
< for (int k3 = 0; k3 < ne3; k3++) {
< for (int i2 = 0; i2 < nr2; i2++) {
< for (int k2 = 0; k2 < ne2; k2++) {
< for (int i1 = 0; i1 < nr1; i1++) {
< for (int k1 = 0; k1 < ne1; k1++) {
< for (int i0 = 0; i0 < nr0; i0++) {
< ggml_vec_acc_f32(ne0,
< (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
< (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
< }
< }
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_repeat_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_repeat_back_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_concat
<
< static void ggml_compute_forward_concat_any(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< const size_t len = ggml_type_size(src0->type);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int32_t dim = ggml_get_op_params_i32(dst, 0);
<
< GGML_ASSERT(dim >= 0 && dim < 4);
<
< int64_t o[4] = {0, 0, 0, 0};
< o[dim] = src0->ne[dim];
<
< const char * x;
<
< // TODO: smarter multi-theading
< for (int i3 = 0; i3 < ne3; i3++) {
< for (int i2 = ith; i2 < ne2; i2 += nth) {
< for (int i1 = 0; i1 < ne1; i1++) {
< for (int i0 = 0; i0 < ne0; i0++) {
< if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
< x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
< } else {
< x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
< }
<
< char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
<
< memcpy(y, x, len);
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_concat_i8(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int32_t dim = ggml_get_op_params_i32(dst, 0);
<
< GGML_ASSERT(dim >= 0 && dim < 4);
<
< int64_t o[4] = {0, 0, 0, 0};
< o[dim] = src0->ne[dim];
<
< const int8_t * x;
<
< // TODO: smarter multi-theading
< for (int i3 = 0; i3 < ne3; i3++) {
< for (int i2 = ith; i2 < ne2; i2 += nth) {
< for (int i1 = 0; i1 < ne1; i1++) {
< for (int i0 = 0; i0 < ne0; i0++) {
< if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
< x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
< } else {
< x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
< }
<
< int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
<
< *y = *x;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_concat_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int32_t dim = ggml_get_op_params_i32(dst, 0);
<
< GGML_ASSERT(dim >= 0 && dim < 4);
<
< int64_t o[4] = {0, 0, 0, 0};
< o[dim] = src0->ne[dim];
<
< const ggml_fp16_t * x;
<
< // TODO: smarter multi-theading
< for (int i3 = 0; i3 < ne3; i3++) {
< for (int i2 = ith; i2 < ne2; i2 += nth) {
< for (int i1 = 0; i1 < ne1; i1++) {
< for (int i0 = 0; i0 < ne0; i0++) {
< if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
< x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
< } else {
< x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
< }
<
< ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
<
< *y = *x;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_concat_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int32_t dim = ggml_get_op_params_i32(dst, 0);
<
< GGML_ASSERT(dim >= 0 && dim < 4);
<
< int64_t o[4] = {0, 0, 0, 0};
< o[dim] = src0->ne[dim];
<
< const float * x;
<
< // TODO: smarter multi-theading
< for (int i3 = 0; i3 < ne3; i3++) {
< for (int i2 = ith; i2 < ne2; i2 += nth) {
< for (int i1 = 0; i1 < ne1; i1++) {
< for (int i0 = 0; i0 < ne0; i0++) {
< if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
< x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
< } else {
< x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
< }
<
< float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
<
< *y = *x;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_concat(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< case GGML_TYPE_BF16:
< case GGML_TYPE_I16:
< {
< ggml_compute_forward_concat_f16(params, dst);
< } break;
< case GGML_TYPE_I8:
< {
< ggml_compute_forward_concat_i8(params, dst);
< } break;
< case GGML_TYPE_F32:
< case GGML_TYPE_I32:
< {
< ggml_compute_forward_concat_f32(params, dst);
< } break;
< default:
< {
< ggml_compute_forward_concat_any(params, dst);
< }
< }
< }
<
< // ggml_compute_forward_gelu
<
< static void ggml_compute_forward_gelu_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_gelu_f32(nc,
< (float *) ((char *) dst->data + i1*( dst->nb[1])),
< (float *) ((char *) src0->data + i1*(src0->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
< UNUSED(x);
< assert(!isnan(x));
< assert(!isinf(x));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_gelu_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_gelu_f16(nc,
< (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
< (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
< const float v = GGML_FP16_TO_FP32(x);
< UNUSED(v);
< assert(!isnan(v));
< assert(!isinf(v));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_gelu(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_gelu_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_gelu_f16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_gelu_quick
<
< static void ggml_compute_forward_gelu_quick_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_gelu_quick_f32(nc,
< (float *) ((char *) dst->data + i1*( dst->nb[1])),
< (float *) ((char *) src0->data + i1*(src0->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
< UNUSED(x);
< assert(!isnan(x));
< assert(!isinf(x));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_gelu_quick_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_gelu_quick_f16(nc,
< (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
< (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
< const float v = GGML_FP16_TO_FP32(x);
< UNUSED(v);
< assert(!isnan(v));
< assert(!isinf(v));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_gelu_quick(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_gelu_quick_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_gelu_quick_f16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_silu
<
< static void ggml_compute_forward_silu_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_silu_f32(nc,
< (float *) ((char *) dst->data + i1*( dst->nb[1])),
< (float *) ((char *) src0->data + i1*(src0->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
< UNUSED(x);
< assert(!isnan(x));
< assert(!isinf(x));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_silu_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_silu_f16(nc,
< (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
< (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
< const float v = GGML_FP16_TO_FP32(x);
< UNUSED(v);
< assert(!isnan(v));
< assert(!isinf(v));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_silu(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_silu_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_silu_f16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
< // ggml_compute_forward_leaky_relu
<
< static void ggml_compute_forward_leaky_relu_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
<
< float negative_slope;
< memcpy(&negative_slope, dst->op_params, sizeof(float));
<
< assert(dst->nb[0] == sizeof(float));
< assert(src0->nb[0] == sizeof(float));
<
< for (int i = 0; i < n; i++) {
< ggml_vec_leaky_relu_f32(nc,
< (float *) ((char *) dst->data + i*( dst->nb[1])),
< (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
< }
< }
<
< static void ggml_compute_forward_leaky_relu_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
<
< float negative_slope;
< memcpy(&negative_slope, dst->op_params, sizeof(float));
<
< assert(dst->nb[0] == sizeof(ggml_fp16_t));
< assert(src0->nb[0] == sizeof(ggml_fp16_t));
<
< for (int i = 0; i < n; i++) {
< ggml_vec_leaky_relu_f16(nc,
< (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
< (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
< }
< }
<
< static void ggml_compute_forward_leaky_relu(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_leaky_relu_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_leaky_relu_f16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_silu_back
<
< static void ggml_compute_forward_silu_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * grad = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< assert(ggml_is_contiguous_1(grad));
< assert(ggml_is_contiguous_1(src1));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src1, dst));
< assert(ggml_are_same_shape(src1, grad));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src1->ne[0];
< const int nr = ggml_nrows(src1);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_silu_backward_f32(nc,
< (float *) ((char *) dst->data + i1*( dst->nb[1])),
< (float *) ((char *) src1->data + i1*(src1->nb[1])),
< (float *) ((char *) grad->data + i1*(grad->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
< UNUSED(x);
< assert(!isnan(x));
< assert(!isinf(x));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_silu_back_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * grad = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< assert(ggml_is_contiguous_1(grad));
< assert(ggml_is_contiguous_1(src1));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src1, dst));
< assert(ggml_are_same_shape(src1, grad));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src1->ne[0];
< const int nr = ggml_nrows(src1);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< ggml_vec_silu_backward_f16(nc,
< (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
< (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
< (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
<
< #ifndef NDEBUG
< for (int k = 0; k < nc; k++) {
< const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
< const float v = GGML_FP16_TO_FP32(x);
< UNUSED(v);
< assert(!isnan(v));
< assert(!isinf(v));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_silu_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_silu_back_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_silu_back_f16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_norm
<
< static void ggml_compute_forward_norm_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< float eps;
< memcpy(&eps, dst->op_params, sizeof(float));
<
< GGML_ASSERT(eps >= 0.0f);
<
< // TODO: optimize
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
< const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
<
< ggml_float sum = 0.0;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< sum += (ggml_float)x[i00];
< }
<
< float mean = sum/ne00;
<
< float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
<
< ggml_float sum2 = 0.0;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< float v = x[i00] - mean;
< y[i00] = v;
< sum2 += (ggml_float)(v*v);
< }
<
< float variance = sum2/ne00;
< const float scale = 1.0f/sqrtf(variance + eps);
<
< ggml_vec_scale_f32(ne00, y, scale);
< }
< }
< }
< }
<
< static void ggml_compute_forward_norm(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_norm_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_group_rms_norm
<
< static void ggml_compute_forward_rms_norm_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< float eps;
< memcpy(&eps, dst->op_params, sizeof(float));
<
< GGML_ASSERT(eps >= 0.0f);
<
< // TODO: optimize
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
< const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
<
< ggml_float sum = 0.0;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< sum += (ggml_float)(x[i00] * x[i00]);
< }
<
< const float mean = sum/ne00;
<
< float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
<
< memcpy(y, x, ne00 * sizeof(float));
< // for (int i00 = 0; i00 < ne00; i00++) {
< // y[i00] = x[i00];
< // }
<
< const float scale = 1.0f/sqrtf(mean + eps);
<
< ggml_vec_scale_f32(ne00, y, scale);
< }
< }
< }
< }
<
< static void ggml_compute_forward_rms_norm(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_rms_norm_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< static void ggml_compute_forward_rms_norm_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
< const struct ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
< GGML_ASSERT(src1->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< float eps;
< memcpy(&eps, dst->op_params, sizeof(float));
<
< // TODO: optimize
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
< // src1 is same shape as src0 => same indices
< const int64_t i11 = i01;
< const int64_t i12 = i02;
< const int64_t i13 = i03;
<
< const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
< const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
<
< ggml_float sum_xx = 0.0;
< ggml_float sum_xdz = 0.0;
<
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< sum_xx += (ggml_float)(x[i00] * x[i00]);
< sum_xdz += (ggml_float)(x[i00] * dz[i00]);
< }
<
< //const float mean = (float)(sum_xx)/ne00;
< const float mean_eps = (float)(sum_xx)/ne00 + eps;
< const float sum_eps = (float)(sum_xx) + eps*ne00;
< //const float mean_xdz = (float)(sum_xdz)/ne00;
< // we could cache rms from forward pass to improve performance.
< // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
< //const float rms = sqrtf(mean_eps);
< const float rrms = 1.0f / sqrtf(mean_eps);
< //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
<
< {
< // z = rms_norm(x)
< //
< // rms_norm(src1) =
< // scale(
< // src1,
< // div(
< // 1,
< // sqrt(
< // add(
< // scale(
< // sum(
< // sqr(
< // src1)),
< // (1.0/N)),
< // eps))));
<
< // postorder:
< // ## op args grad
< // 00 param src1 grad[#00]
< // 01 const 1
< // 02 sqr (#00) grad[#02]
< // 03 sum (#02) grad[#03]
< // 04 const 1/N
< // 05 scale (#03, #04) grad[#05]
< // 06 const eps
< // 07 add (#05, #06) grad[#07]
< // 08 sqrt (#07) grad[#08]
< // 09 div (#01,#08) grad[#09]
< // 10 scale (#00,#09) grad[#10]
< //
< // backward pass, given grad[#10]
< // #10: scale
< // grad[#00] += scale(grad[#10],#09)
< // grad[#09] += sum(mul(grad[#10],#00))
< // #09: div
< // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
< // #08: sqrt
< // grad[#07] += mul(grad[#08], div(0.5, #08))
< // #07: add
< // grad[#05] += grad[#07]
< // #05: scale
< // grad[#03] += scale(grad[#05],#04)
< // #03: sum
< // grad[#02] += repeat(grad[#03], #02)
< // #02:
< // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
< //
< // substitute and simplify:
< // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
< // grad[#02] = repeat(grad[#03], #02)
< // grad[#02] = repeat(scale(grad[#05],#04), #02)
< // grad[#02] = repeat(scale(grad[#07],#04), #02)
< // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
< // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
< // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
< // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
< // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
< // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
< // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
< // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
< // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
< // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
< // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
< // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
< // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
< // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
< // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
< // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
< // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
< // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
< // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
< // a = b*c + d*e
< // a = b*c*f/f + d*e*f/f
< // a = (b*c*f + d*e*f)*(1/f)
< // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
< // a = (b + d*e/c)*c
< // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
< // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
< // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
< // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
< // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
< // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
< // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
< // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
< // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
< // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
< }
< // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
< // post-order:
< // dx := x
< // dx := scale(dx,-mean_xdz/mean_eps)
< // dx := add(dx, dz)
< // dx := scale(dx, rrms)
< float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
<
< // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
< ggml_vec_cpy_f32 (ne00, dx, x);
< // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
< ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
< ggml_vec_acc_f32 (ne00, dx, dz);
< ggml_vec_scale_f32(ne00, dx, rrms);
< }
< }
< }
< }
<
< static void ggml_compute_forward_rms_norm_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_rms_norm_back_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_group_norm
<
< static void ggml_compute_forward_group_norm_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< // TODO: optimize
<
< float eps;
< memcpy(&eps, dst->op_params + 1, sizeof(float));
<
< int n_channels = src0->ne[2];
< int n_groups = dst->op_params[0];
< int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
< for (int i = ith; i < n_groups; i += nth) {
< int start = i * n_channels_per_group;
< int end = start + n_channels_per_group;
< if (end > n_channels) {
< end = n_channels;
< }
< int step = end - start;
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< ggml_float sum = 0.0;
< for (int64_t i02 = start; i02 < end; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
<
< ggml_float sumr = 0.0;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< sumr += (ggml_float)x[i00];
< }
< sum += sumr;
< }
< }
< const float mean = sum / (ne00 * ne01 * step);
<
< ggml_float sum2 = 0.0;
< for (int64_t i02 = start; i02 < end; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
<
< float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
<
< ggml_float sumr = 0.0;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< float v = x[i00] - mean;
< y[i00] = v;
< sumr += (ggml_float)(v * v);
< }
< sum2 += sumr;
< }
< }
< const float variance = sum2 / (ne00 * ne01 * step);
< const float scale = 1.0f / sqrtf(variance + eps);
<
< for (int64_t i02 = start; i02 < end; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
< ggml_vec_scale_f32(ne00, y, scale);
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_group_norm(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_group_norm_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_l2_norm
<
< static void ggml_compute_forward_l2_norm_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< float eps;
< memcpy(&eps, dst->op_params, sizeof(float));
<
< GGML_ASSERT(eps >= 0.0f);
<
< // TODO: optimize
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
< const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
<
< ggml_float sum = 0.0;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< sum += (ggml_float)(x[i00] * x[i00]);
< }
<
< float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
<
< memcpy(y, x, ne00 * sizeof(float));
<
< const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
<
< ggml_vec_scale_f32(ne00, y, scale);
< }
< }
< }
< }
<
< static void ggml_compute_forward_l2_norm(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_l2_norm_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
7199,12339d1719
< // ggml_compute_forward_out_prod
<
< static void ggml_compute_forward_out_prod_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< GGML_ASSERT(dst->type == GGML_TYPE_F32);
< GGML_ASSERT(src0->type == GGML_TYPE_F32);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_ASSERT(ne0 == ne00);
< GGML_ASSERT(ne1 == ne10);
< GGML_ASSERT(ne2 == ne12);
< GGML_ASSERT(ne3 == ne13);
<
< GGML_ASSERT(ne2 % ne02 == 0);
< GGML_ASSERT(ne3 % ne03 == 0);
<
< // we don't support permuted src0 or src1
< GGML_ASSERT(nb00 == sizeof(float));
<
< // dst cannot be transposed or permuted
< GGML_ASSERT(nb0 == sizeof(float));
< // GGML_ASSERT(nb0 <= nb1);
< // GGML_ASSERT(nb1 <= nb2);
< // GGML_ASSERT(nb2 <= nb3);
<
< // nb01 >= nb00 - src0 is not transposed
< // compute by src0 rows
<
< if (ith == 0) {
< ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
< }
< ggml_barrier(params->threadpool);
<
< // dst[:,:,:,:] = 0
< // for i2,i3:
< // for i1:
< // for i01:
< // for i0:
< // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
<
< // parallelize by last three dimensions
<
< // total rows in dst
< const int64_t nr = ne1*ne2*ne3;
<
< // rows per thread
< const int64_t dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int64_t ir0 = dr*ith;
< const int64_t ir1 = MIN(ir0 + dr, nr);
<
< // block-tiling attempt
< const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
< const int64_t blck_1 = 16;
<
< // dps == dst per src0, used for group query attention
< const int64_t dps2 = ne2 / ne02;
< const int64_t dps3 = ne3 / ne03;
<
< for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
< const int64_t bir1 = MIN(bir + blck_1, ir1);
< for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
< const int64_t bne01 = MIN(bi01 + blck_0, ne01);
< for (int64_t ir = bir; ir < bir1; ++ir) {
< // dst indices
< const int64_t i3 = ir/(ne2*ne1);
< const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
< const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< const int64_t i02 = i2 / dps2;
< const int64_t i03 = i3 / dps3;
<
< //const int64_t i10 = i1;
< const int64_t i12 = i2;
< const int64_t i13 = i3;
<
< #if GGML_VEC_MAD_UNROLL > 2
< const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
< for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
< const int64_t i11 = i01;
<
< float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
< float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
< float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
<
< ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
< }
< for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
< const int64_t i11 = i01;
<
< float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
< float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
< float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
<
< ggml_vec_mad_f32(ne0, d, s0, *s1);
< }
< #else
< for (int64_t i01 = bi01; i01 < bne01; ++i01) {
< const int64_t i11 = i01;
<
< float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
< float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
< float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
<
< ggml_vec_mad_f32(ne0, d, s0, *s1);
< }
< #endif
< }
< }
< }
< }
<
< static void ggml_compute_forward_out_prod_q_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const enum ggml_type type = src0->type;
< ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
<
< GGML_ASSERT(ne02 == ne12);
< GGML_ASSERT(ne03 == ne13);
< GGML_ASSERT(ne2 == ne12);
< GGML_ASSERT(ne3 == ne13);
<
< // we don't support permuted src0 dim0
< GGML_ASSERT(nb00 == ggml_type_size(type));
<
< // dst dim0 cannot be transposed or permuted
< GGML_ASSERT(nb0 == sizeof(float));
< // GGML_ASSERT(nb0 <= nb1);
< // GGML_ASSERT(nb1 <= nb2);
< // GGML_ASSERT(nb2 <= nb3);
<
< GGML_ASSERT(ne0 == ne00);
< GGML_ASSERT(ne1 == ne10);
< GGML_ASSERT(ne2 == ne02);
< GGML_ASSERT(ne3 == ne03);
<
< // nb01 >= nb00 - src0 is not transposed
< // compute by src0 rows
<
< if (ith == 0) {
< ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
< }
< ggml_barrier(params->threadpool);
<
< // parallelize by last three dimensions
<
< // total rows in dst
< const int64_t nr = ne1*ne2*ne3;
<
< // rows per thread
< const int64_t dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int64_t ir0 = dr*ith;
< const int64_t ir1 = MIN(ir0 + dr, nr);
<
< // dst[:,:,:,:] = 0
< // for i2,i3:
< // for i1:
< // for i01:
< // for i0:
< // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
<
< float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
<
< for (int64_t ir = ir0; ir < ir1; ++ir) {
< // dst indices
< const int64_t i3 = ir/(ne2*ne1);
< const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
< const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
<
< const int64_t i02 = i2;
< const int64_t i03 = i3;
<
< //const int64_t i10 = i1;
< const int64_t i12 = i2;
< const int64_t i13 = i3;
<
< for (int64_t i01 = 0; i01 < ne01; ++i01) {
< const int64_t i11 = i01;
<
< float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
< float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
< float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
<
< dequantize_row_q(s0, wdata, ne0);
< ggml_vec_mad_f32(ne0, d, wdata, *s1);
< }
< }
< }
<
< static void ggml_compute_forward_out_prod(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< {
< ggml_compute_forward_out_prod_q_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< GGML_ABORT("fatal error"); // todo
< // ggml_compute_forward_out_prod_f16_f32(params, dst);
< }
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_out_prod_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_scale
<
< static void ggml_compute_forward_scale_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(ggml_is_contiguous(src0));
< GGML_ASSERT(ggml_is_contiguous(dst));
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
<
< // scale factor
< float v;
< memcpy(&v, dst->op_params, sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< const size_t nb01 = src0->nb[1];
<
< const size_t nb1 = dst->nb[1];
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< if (dst->data != src0->data) {
< // src0 is same shape as dst => same indices
< memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
< }
< ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
< }
< }
<
< static void ggml_compute_forward_scale(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_scale_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_set
<
< static void ggml_compute_forward_set_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
<
< // view src0 and dst with these strides and data offset inbytes during set
< // nb0 is implicitly element_size because src0 and dst are contiguous
< size_t nb1 = ((int32_t *) dst->op_params)[0];
< size_t nb2 = ((int32_t *) dst->op_params)[1];
< size_t nb3 = ((int32_t *) dst->op_params)[2];
< size_t offset = ((int32_t *) dst->op_params)[3];
< bool inplace = (bool) ((int32_t *) dst->op_params)[4];
<
< if (!inplace) {
< if (params->ith == 0) {
< // memcpy needs to be synchronized across threads to avoid race conditions.
< // => do it in INIT phase
< memcpy(
< ((char *) dst->data),
< ((char *) src0->data),
< ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
< }
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src1);
< const int nc = src1->ne[0];
<
< GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
< GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
<
< // src0 and dst as viewed during set
< const size_t nb0 = ggml_element_size(src0);
<
< const int im0 = (ne10 == 0 ? 0 : ne10-1);
< const int im1 = (ne11 == 0 ? 0 : ne11-1);
< const int im2 = (ne12 == 0 ? 0 : ne12-1);
< const int im3 = (ne13 == 0 ? 0 : ne13-1);
<
< GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
<
< GGML_ASSERT(nb10 == sizeof(float));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are viewed with shape of src1 and offset
< // => same indices
< const int i3 = ir/(ne12*ne11);
< const int i2 = (ir - i3*ne12*ne11)/ne11;
< const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
<
< ggml_vec_cpy_f32(nc,
< (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
< (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
< }
< }
<
< static void ggml_compute_forward_set_i32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
<
< // view src0 and dst with these strides and data offset inbytes during set
< // nb0 is implicitly element_size because src0 and dst are contiguous
< size_t nb1 = ((int32_t *) dst->op_params)[0];
< size_t nb2 = ((int32_t *) dst->op_params)[1];
< size_t nb3 = ((int32_t *) dst->op_params)[2];
< size_t offset = ((int32_t *) dst->op_params)[3];
< bool inplace = (bool) ((int32_t *) dst->op_params)[4];
<
< if (!inplace) {
< if (params->ith == 0) {
< // memcpy needs to be synchronized across threads to avoid race conditions.
< // => do it in INIT phase
< memcpy(
< ((char *) dst->data),
< ((char *) src0->data),
< ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
< }
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src1);
< const int nc = src1->ne[0];
<
< GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
< GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
<
< // src0 and dst as viewed during set
< const size_t nb0 = ggml_element_size(src0);
<
< const int im0 = (ne10 == 0 ? 0 : ne10-1);
< const int im1 = (ne11 == 0 ? 0 : ne11-1);
< const int im2 = (ne12 == 0 ? 0 : ne12-1);
< const int im3 = (ne13 == 0 ? 0 : ne13-1);
<
< GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
<
< GGML_ASSERT(nb10 == sizeof(int32_t));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // src0 and dst are viewed with shape of src1 and offset
< // => same indices
< const int i3 = ir/(ne12*ne11);
< const int i2 = (ir - i3*ne12*ne11)/ne11;
< const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
<
< ggml_vec_cpy_i32(nc,
< (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
< (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
< }
< }
<
< static void ggml_compute_forward_set(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_set_f32(params, dst);
< } break;
< case GGML_TYPE_I32:
< {
< ggml_compute_forward_set_i32(params, dst);
< } break;
< case GGML_TYPE_F16:
< case GGML_TYPE_BF16:
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q8_1:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_cpy
<
< static void ggml_compute_forward_cpy(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< ggml_compute_forward_dup(params, dst);
< }
<
< // ggml_compute_forward_cont
<
< static void ggml_compute_forward_cont(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< ggml_compute_forward_dup(params, dst);
< }
<
< // ggml_compute_forward_reshape
<
< static void ggml_compute_forward_reshape(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< // NOP
< UNUSED(params);
< UNUSED(dst);
< }
<
< // ggml_compute_forward_view
<
< static void ggml_compute_forward_view(
< const struct ggml_compute_params * params,
< const struct ggml_tensor * dst) {
< // NOP
< UNUSED(params);
< UNUSED(dst);
< }
<
< // ggml_compute_forward_permute
<
< static void ggml_compute_forward_permute(
< const struct ggml_compute_params * params,
< const struct ggml_tensor * dst) {
< // NOP
< UNUSED(params);
< UNUSED(dst);
< }
<
< // ggml_compute_forward_transpose
<
< static void ggml_compute_forward_transpose(
< const struct ggml_compute_params * params,
< const struct ggml_tensor * dst) {
< // NOP
< UNUSED(params);
< UNUSED(dst);
< }
<
< // ggml_compute_forward_get_rows
<
< static void ggml_compute_forward_get_rows_q(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int64_t nc = ne00;
< const int64_t nr = ggml_nelements(src1);
<
< const enum ggml_type type = src0->type;
< ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
<
< assert(ne0 == nc);
< assert(ne02 == ne11);
< assert(nb00 == ggml_type_size(type));
< assert(ggml_nrows(dst) == nr);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t i = ir0; i < ir1; ++i) {
< const int64_t i12 = i/(ne11*ne10);
< const int64_t i11 = (i - i12*ne11*ne10)/ne10;
< const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
< const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
<
< GGML_ASSERT(i01 >= 0 && i01 < ne01);
<
< dequantize_row_q(
< (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
< (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
< }
< }
<
< static void ggml_compute_forward_get_rows_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int64_t nc = ne00;
< const int64_t nr = ggml_nelements(src1);
<
< assert(ne0 == nc);
< assert(ne02 == ne11);
< assert(nb00 == sizeof(ggml_fp16_t));
< assert(ggml_nrows(dst) == nr);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t i = ir0; i < ir1; ++i) {
< const int64_t i12 = i/(ne11*ne10);
< const int64_t i11 = (i - i12*ne11*ne10)/ne10;
< const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
< const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
<
< GGML_ASSERT(i01 >= 0 && i01 < ne01);
<
< ggml_fp16_to_fp32_row(
< (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
< (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
< }
< }
<
< static void ggml_compute_forward_get_rows_bf16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int64_t nc = ne00;
< const int64_t nr = ggml_nelements(src1);
<
< assert(ne0 == nc);
< assert(ne02 == ne11);
< assert(nb00 == sizeof(ggml_bf16_t));
< assert(ggml_nrows(dst) == nr);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t i = ir0; i < ir1; ++i) {
< const int64_t i12 = i/(ne11*ne10);
< const int64_t i11 = (i - i12*ne11*ne10)/ne10;
< const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
< const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
<
< GGML_ASSERT(i01 >= 0 && i01 < ne01);
<
< ggml_bf16_to_fp32_row(
< (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
< (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
< }
< }
<
< static void ggml_compute_forward_get_rows_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int64_t nc = ne00;
< const int64_t nr = ggml_nelements(src1);
<
< assert(ne0 == nc);
< assert(ne02 == ne11);
< assert(nb00 == sizeof(float));
< assert(ggml_nrows(dst) == nr);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t i = ir0; i < ir1; ++i) {
< const int64_t i12 = i/(ne11*ne10);
< const int64_t i11 = (i - i12*ne11*ne10)/ne10;
< const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
< const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
<
< GGML_ASSERT(i01 >= 0 && i01 < ne01);
<
< ggml_vec_cpy_f32(nc,
< (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
< (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
< }
< }
<
< static void ggml_compute_forward_get_rows(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q8_1:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< {
< ggml_compute_forward_get_rows_q(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_get_rows_f16(params, dst);
< } break;
< case GGML_TYPE_BF16:
< {
< ggml_compute_forward_get_rows_bf16(params, dst);
< } break;
< case GGML_TYPE_F32:
< case GGML_TYPE_I32:
< {
< ggml_compute_forward_get_rows_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
<
< //static bool first = true;
< //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
< //if (first) {
< // first = false;
< //} else {
< // for (int k = 0; k < dst->ne[1]; ++k) {
< // for (int j = 0; j < dst->ne[0]/16; ++j) {
< // for (int i = 0; i < 16; ++i) {
< // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
< // }
< // printf("\n");
< // }
< // printf("\n");
< // }
< // printf("\n");
< // exit(0);
< //}
< }
<
< // ggml_compute_forward_get_rows_back
<
< static void ggml_compute_forward_get_rows_back_f32_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< if (params->ith != 0) {
< return;
< }
<
< GGML_ASSERT(ggml_is_contiguous(dst));
<
< // ggml_compute_forward_dup_same_cont(params, opt0, dst);
<
< memset(dst->data, 0, ggml_nbytes(dst));
<
< const int nc = src0->ne[0];
< const int nr = ggml_nelements(src1);
<
< GGML_ASSERT( dst->ne[0] == nc);
< GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
<
< for (int i = 0; i < nr; ++i) {
< const int r = ((int32_t *) src1->data)[i];
<
< for (int j = 0; j < nc; ++j) {
< ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
< ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
< }
< }
< }
<
< static void ggml_compute_forward_get_rows_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< if (params->ith != 0) {
< return;
< }
<
< GGML_ASSERT(ggml_is_contiguous(dst));
<
< // ggml_compute_forward_dup_same_cont(params, opt0, dst);
<
< memset(dst->data, 0, ggml_nbytes(dst));
<
< const int nc = src0->ne[0];
< const int nr = ggml_nelements(src1);
<
< GGML_ASSERT( dst->ne[0] == nc);
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< for (int i = 0; i < nr; ++i) {
< const int r = ((int32_t *) src1->data)[i];
<
< ggml_vec_add_f32(nc,
< (float *) ((char *) dst->data + r*dst->nb[1]),
< (float *) ((char *) dst->data + r*dst->nb[1]),
< (float *) ((char *) src0->data + i*src0->nb[1]));
< }
< }
<
< static void ggml_compute_forward_get_rows_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_get_rows_back_f32_f16(params, dst);
< } break;
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_get_rows_back_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
<
< //static bool first = true;
< //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
< //if (first) {
< // first = false;
< //} else {
< // for (int k = 0; k < dst->ne[1]; ++k) {
< // for (int j = 0; j < dst->ne[0]/16; ++j) {
< // for (int i = 0; i < 16; ++i) {
< // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
< // }
< // printf("\n");
< // }
< // printf("\n");
< // }
< // printf("\n");
< // exit(0);
< //}
< }
<
< // ggml_compute_forward_diag
<
< static void ggml_compute_forward_diag_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< // TODO: handle transposed/permuted matrices
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(ne00 == ne0);
< GGML_ASSERT(ne00 == ne1);
< GGML_ASSERT(ne01 == 1);
< GGML_ASSERT(ne02 == ne2);
< GGML_ASSERT(ne03 == ne3);
<
< GGML_ASSERT(nb00 == sizeof(float));
< GGML_ASSERT(nb0 == sizeof(float));
<
< for (int i3 = 0; i3 < ne3; i3++) {
< for (int i2 = 0; i2 < ne2; i2++) {
< for (int i1 = 0; i1 < ne1; i1++) {
< float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
< float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
< for (int i0 = 0; i0 < i1; i0++) {
< d[i0] = 0;
< }
< d[i1] = s[i1];
< for (int i0 = i1+1; i0 < ne0; i0++) {
< d[i0] = 0;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_diag(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_diag_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_diag_mask_inf
<
< static void ggml_compute_forward_diag_mask_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const float value) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int n_past = ((int32_t *) dst->op_params)[0];
< const bool inplace = src0->data == dst->data;
<
< GGML_ASSERT(n_past >= 0);
<
< if (!inplace) {
< if (ith == 0) {
< // memcpy needs to be synchronized across threads to avoid race conditions.
< // => do it in INIT phase
< GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
< GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
< memcpy(
< ((char *) dst->data),
< ((char *) src0->data),
< ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
< }
<
< // TODO: handle transposed/permuted matrices
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
< const int nr = src0->ne[1];
< const int nz = n/nr;
<
< GGML_ASSERT( dst->nb[0] == sizeof(float));
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< for (int k = 0; k < nz; k++) {
< for (int j = ith; j < nr; j += nth) {
< for (int i = n_past; i < nc; i++) {
< if (i > n_past + j) {
< *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_diag_mask_inf(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< static void ggml_compute_forward_diag_mask_zero(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_diag_mask_f32(params, dst, 0);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_soft_max
<
< static void ggml_compute_forward_soft_max_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< assert(ggml_is_contiguous(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< float scale = 1.0f;
< float max_bias = 0.0f;
<
< memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
< memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
<
< // TODO: handle transposed/permuted matrices
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< //const int64_t ne11 = src1 ? src1->ne[1] : 1;
<
< // TODO: is this supposed to be ceil instead of floor?
< // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
< const uint32_t n_head = ne02;
< const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
<
< const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
< const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
<
< const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< // ALiBi
< const uint32_t h = (i1/ne01)%ne02; // head
< const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
<
< float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
< float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
<
< // broadcast the mask across rows
< ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
< float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
<
< ggml_vec_cpy_f32 (nc, wp, sp);
< ggml_vec_scale_f32(nc, wp, scale);
< if (mp_f32) {
< if (use_f16) {
< for (int i = 0; i < nc; ++i) {
< wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
< }
< } else {
< for (int i = 0; i < nc; ++i) {
< wp[i] += slope*mp_f32[i];
< }
< }
< }
<
< #ifndef NDEBUG
< for (int i = 0; i < nc; ++i) {
< //printf("p[%d] = %f\n", i, p[i]);
< assert(!isnan(wp[i]));
< }
< #endif
<
< float max = -INFINITY;
< ggml_vec_max_f32(nc, &max, wp);
<
< ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
< assert(sum > 0.0);
<
< sum = 1.0/sum;
< ggml_vec_scale_f32(nc, dp, sum);
<
< #ifndef NDEBUG
< for (int i = 0; i < nc; ++i) {
< assert(!isnan(dp[i]));
< assert(!isinf(dp[i]));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_soft_max(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_soft_max_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
<
< // ggml_compute_forward_soft_max_ext_back
<
< static void ggml_compute_forward_soft_max_ext_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(ggml_is_contiguous(src0));
< GGML_ASSERT(ggml_is_contiguous(src1));
< GGML_ASSERT(ggml_is_contiguous(dst));
< GGML_ASSERT(ggml_are_same_shape(src0, dst));
< GGML_ASSERT(ggml_are_same_shape(src1, dst));
<
< float scale = 1.0f;
< float max_bias = 0.0f;
<
< memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
< memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
<
< GGML_ASSERT(max_bias == 0.0f);
<
< // TODO: handle transposed/permuted matrices
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src0->ne[0];
< const int nr = ggml_nrows(src0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
< float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
< float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
<
< #ifndef NDEBUG
< for (int i = 0; i < nc; ++i) {
< //printf("p[%d] = %f\n", i, p[i]);
< assert(!isnan(dy[i]));
< assert(!isnan(y[i]));
< }
< #endif
< // Jii = yi - yi*yi
< // Jij = -yi*yj
< // J = diag(y)-y.T*y
< // dx = J * dy
< // dxk = sum_i(Jki * dyi)
< // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
< // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
< // dxk = sum_i(-yk*yi * dyi) + yk*dyk
< // dxk = -yk * sum_i(yi * dyi) + yk*dyk
< // dxk = -yk * dot(y, dy) + yk*dyk
< // dxk = yk * (- dot(y, dy) + dyk)
< // dxk = yk * (dyk - dot(y, dy))
< //
< // post-order:
< // dot_y_dy := dot(y, dy)
< // dx := dy
< // dx := dx - dot_y_dy
< // dx := dx * y
<
< // linear runtime, no additional memory
< float dot_y_dy = 0;
< ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
< ggml_vec_cpy_f32 (nc, dx, dy);
< ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
< ggml_vec_mul_f32 (nc, dx, dx, y);
< ggml_vec_scale_f32(nc, dx, scale);
<
< #ifndef NDEBUG
< for (int i = 0; i < nc; ++i) {
< assert(!isnan(dx[i]));
< assert(!isinf(dx[i]));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_soft_max_ext_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_soft_max_ext_back_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_clamp
<
< static void ggml_compute_forward_clamp_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< float min;
< float max;
< memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
< memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
<
< const size_t nb00 = src0->nb[0];
< const size_t nb01 = src0->nb[1];
<
< const size_t nb0 = dst->nb[0];
< const size_t nb1 = dst->nb[1];
<
< GGML_ASSERT( nb0 == sizeof(float));
< GGML_ASSERT(nb00 == sizeof(float));
<
< for (int j = ith; j < n; j += nth) {
< float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
< float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
<
< for (int i = 0; i < nc; i++) {
< dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
< }
< }
< }
<
< static void ggml_compute_forward_clamp_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< float min;
< float max;
< memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
< memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
<
< const size_t nb00 = src0->nb[0];
< const size_t nb01 = src0->nb[1];
<
< const size_t nb0 = dst->nb[0];
< const size_t nb1 = dst->nb[1];
<
< GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
<
< for (int j = ith; j < n; j += nth) {
< ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
< ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
<
< for (int i = 0; i < nc; i++) {
< float v = GGML_FP16_TO_FP32(src0_ptr[i]);
< dst_ptr[i] = GGML_FP32_TO_FP16(MAX(MIN(v, max), min));
< }
< }
< }
<
< static void ggml_compute_forward_clamp(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_clamp_f32(params, dst);
< } break;
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_clamp_f16(params, dst);
< } break;
< case GGML_TYPE_BF16:
< case GGML_TYPE_Q4_0:
< case GGML_TYPE_Q4_1:
< case GGML_TYPE_Q5_0:
< case GGML_TYPE_Q5_1:
< case GGML_TYPE_Q8_0:
< case GGML_TYPE_Q8_1:
< case GGML_TYPE_Q2_K:
< case GGML_TYPE_Q3_K:
< case GGML_TYPE_Q4_K:
< case GGML_TYPE_Q5_K:
< case GGML_TYPE_Q6_K:
< case GGML_TYPE_TQ1_0:
< case GGML_TYPE_TQ2_0:
< case GGML_TYPE_IQ2_XXS:
< case GGML_TYPE_IQ2_XS:
< case GGML_TYPE_IQ3_XXS:
< case GGML_TYPE_IQ1_S:
< case GGML_TYPE_IQ1_M:
< case GGML_TYPE_IQ4_NL:
< case GGML_TYPE_IQ4_XS:
< case GGML_TYPE_IQ3_S:
< case GGML_TYPE_IQ2_S:
< case GGML_TYPE_Q8_K:
< case GGML_TYPE_I8:
< case GGML_TYPE_I16:
< case GGML_TYPE_I32:
< case GGML_TYPE_I64:
< case GGML_TYPE_F64:
< case GGML_TYPE_COUNT:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_rope
<
< static float rope_yarn_ramp(const float low, const float high, const int i0) {
< const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
< return 1 - MIN(1, MAX(0, y));
< }
<
< // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
< // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
< static void rope_yarn(
< float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
< float * cos_theta, float * sin_theta) {
< // Get n-d rotational scaling corrected for extrapolation
< float theta_interp = freq_scale * theta_extrap;
< float theta = theta_interp;
< if (ext_factor != 0.0f) {
< float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
< theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
<
< // Get n-d magnitude scaling corrected for interpolation
< mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
< }
< *cos_theta = cosf(theta) * mscale;
< *sin_theta = sinf(theta) * mscale;
< }
<
< static void ggml_rope_cache_init(
< float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
< float * cache, float sin_sign, float theta_scale) {
< // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
< float theta = theta_base;
< for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
< const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
< rope_yarn(
< theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
< );
< cache[i0 + 1] *= sin_sign;
<
< theta *= theta_scale;
< }
< }
<
< static void ggml_mrope_cache_init(
< float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
< float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
< float * cache, float sin_sign, float theta_scale) {
< // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
< float theta_t = theta_base_t;
< float theta_h = theta_base_h;
< float theta_w = theta_base_w;
< float theta_e = theta_base_e; // extra position id for vision encoder
< int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
< int sec_w = sections[1] + sections[0];
< int sec_e = sections[2] + sec_w;
< GGML_ASSERT(sect_dims <= ne0);
<
< for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
< const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
<
< int sector = (i0 / 2) % sect_dims;
< if (indep_sects) {
< // compute theta independently for each dim sections
< // (i.e. reset corresponding theta when `i0` go from one section to another)
< if (sector == 0) {
< theta_t = theta_base_t;
< }
< else if (sector == sections[0]) {
< theta_h = theta_base_h;;
< }
< else if (sector == sec_w) {
< theta_w = theta_base_w;
< }
< else if (sector == sec_e) {
< theta_e = theta_base_e;
< }
< }
<
< float theta = theta_t;
< if (sector >= sections[0] && sector < sec_w) {
< theta = theta_h;
< }
< else if (sector >= sec_w && sector < sec_w + sections[2]) {
< theta = theta_w;
< }
< else if (sector >= sec_w + sections[2]) {
< theta = theta_e;
< }
<
< rope_yarn(
< theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
< );
< cache[i0 + 1] *= sin_sign;
<
< theta_t *= theta_scale;
< theta_w *= theta_scale;
< theta_h *= theta_scale;
< theta_e *= theta_scale;
< }
< }
<
< static void ggml_compute_forward_rope_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const bool forward) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
< const struct ggml_tensor * src2 = dst->src[2];
<
< float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
< int sections[4];
<
< //const int n_past = ((int32_t *) dst->op_params)[0];
< const int n_dims = ((int32_t *) dst->op_params)[1];
< const int mode = ((int32_t *) dst->op_params)[2];
< //const int n_ctx = ((int32_t *) dst->op_params)[3];
< const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
<
< memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
< memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
< memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
< memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
< memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
< memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
< memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
< //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
<
< GGML_ASSERT(nb00 == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(dst);
<
< GGML_ASSERT(n_dims <= ne0);
< GGML_ASSERT(n_dims % 2 == 0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< // row index used to determine which thread to use
< int ir = 0;
<
< const float theta_scale = powf(freq_base, -2.0f/n_dims);
<
< float corr_dims[2];
< ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
<
< const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
< const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
< const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
<
< if (is_mrope) {
< GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
< }
<
< if (is_vision) {
< GGML_ASSERT(n_dims == ne0/2);
< }
<
< const float * freq_factors = NULL;
< if (src2 != NULL) {
< GGML_ASSERT(src2->type == GGML_TYPE_F32);
< GGML_ASSERT(src2->ne[0] >= n_dims / 2);
< freq_factors = (const float *) src2->data;
< }
<
< // backward process uses inverse rotation by cos and sin.
< // cos and sin build a rotation matrix, where the inverse is the transpose.
< // this essentially just switches the sign of sin.
< const float sin_sign = forward ? 1.0f : -1.0f;
<
< const int32_t * pos = (const int32_t *) src1->data;
<
< for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
< for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
<
< float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
< if (!is_mrope) {
< const int64_t p = pos[i2];
< ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
< }
< else {
< const int64_t p_t = pos[i2];
< const int64_t p_h = pos[i2 + ne2];
< const int64_t p_w = pos[i2 + ne2 * 2];
< const int64_t p_e = pos[i2 + ne2 * 3];
< ggml_mrope_cache_init(
< p_t, p_h, p_w, p_e, sections, is_vision,
< freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
< }
<
< for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
< if (ir++ < ir0) continue;
< if (ir > ir1) break;
<
< if (is_neox || is_mrope) {
< if (is_vision){
< for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
< const int64_t ic = i0/2;
<
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
< float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
<
< const float x0 = src[0];
< const float x1 = src[n_dims];
<
< dst_data[0] = x0*cos_theta - x1*sin_theta;
< dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
< }
< } else {
< for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
< const int64_t ic = i0/2;
<
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
< float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
<
< const float x0 = src[0];
< const float x1 = src[n_dims/2];
<
< dst_data[0] = x0*cos_theta - x1*sin_theta;
< dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
< }
< }
< } else {
< for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
< float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
<
< const float x0 = src[0];
< const float x1 = src[1];
<
< dst_data[0] = x0*cos_theta - x1*sin_theta;
< dst_data[1] = x0*sin_theta + x1*cos_theta;
< }
< }
<
< if (is_vision) {
< for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
< const int64_t ic = i0/2;
<
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
< float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
<
< const float x0 = src[0];
< const float x1 = src[n_dims];
<
< dst_data[0] = x0*cos_theta - x1*sin_theta;
< dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
< }
< } else {
< // fill the remain channels with data from src tensor
< for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
< const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
< float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
<
< dst_data[0] = src[0];
< dst_data[1] = src[1];
< }
< }
< }
< }
< }
< }
<
< // TODO: deduplicate f16/f32 code
< static void ggml_compute_forward_rope_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const bool forward) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
< const struct ggml_tensor * src2 = dst->src[2];
<
< float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
< int sections[4];
<
< //const int n_past = ((int32_t *) dst->op_params)[0];
< const int n_dims = ((int32_t *) dst->op_params)[1];
< const int mode = ((int32_t *) dst->op_params)[2];
< //const int n_ctx = ((int32_t *) dst->op_params)[3];
< const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
< memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
< memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
< memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
< memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
< memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
< memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
< memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
<
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
< //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
<
< GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(dst);
<
< GGML_ASSERT(n_dims <= ne0);
< GGML_ASSERT(n_dims % 2 == 0);
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< // row index used to determine which thread to use
< int ir = 0;
<
< const float theta_scale = powf(freq_base, -2.0f/n_dims);
<
< float corr_dims[2];
< ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
<
< const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
< const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
< const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
<
< if (is_mrope) {
< GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
< }
<
< if (is_vision) {
< GGML_ASSERT(n_dims == ne0/2);
< }
<
< const float * freq_factors = NULL;
< if (src2 != NULL) {
< GGML_ASSERT(src2->type == GGML_TYPE_F32);
< GGML_ASSERT(src2->ne[0] >= n_dims / 2);
< freq_factors = (const float *) src2->data;
< }
<
< // backward process uses inverse rotation by cos and sin.
< // cos and sin build a rotation matrix, where the inverse is the transpose.
< // this essentially just switches the sign of sin.
< const float sin_sign = forward ? 1.0f : -1.0f;
<
< const int32_t * pos = (const int32_t *) src1->data;
<
< for (int64_t i3 = 0; i3 < ne3; i3++) {
< for (int64_t i2 = 0; i2 < ne2; i2++) {
<
< float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
< if (!is_mrope) {
< const int64_t p = pos[i2];
< ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
< }
< else {
< const int64_t p_t = pos[i2];
< const int64_t p_h = pos[i2 + ne2];
< const int64_t p_w = pos[i2 + ne2 * 2];
< const int64_t p_e = pos[i2 + ne2 * 3];
< ggml_mrope_cache_init(
< p_t, p_h, p_w, p_e, sections, is_vision,
< freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
< }
<
< for (int64_t i1 = 0; i1 < ne1; i1++) {
< if (ir++ < ir0) continue;
< if (ir > ir1) break;
<
< if (is_neox || is_mrope) {
< if (is_vision) {
< for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
< const int64_t ic = i0/2;
<
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
< ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
<
< const float x0 = GGML_FP16_TO_FP32(src[0]);
< const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
<
< dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
< dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
< }
< } else {
< for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
< const int64_t ic = i0/2;
<
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
< ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
<
< const float x0 = GGML_FP16_TO_FP32(src[0]);
< const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
<
< dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
< dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
< }
< }
< } else {
< for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
< ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
<
< const float x0 = GGML_FP16_TO_FP32(src[0]);
< const float x1 = GGML_FP16_TO_FP32(src[1]);
<
< dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
< dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
< }
< }
<
< if (is_vision) {
< for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
< const int64_t ic = i0/2;
<
< const float cos_theta = cache[i0 + 0];
< const float sin_theta = cache[i0 + 1];
<
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
< ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
<
< const float x0 = GGML_FP16_TO_FP32(src[0]);
< const float x1 = GGML_FP16_TO_FP32(src[n_dims]);
<
< dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
< dst_data[n_dims] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
< }
< } else {
< for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
< ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
<
< dst_data[0] = src[0];
< dst_data[1] = src[1];
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_rope(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_rope_f16(params, dst, true);
< } break;
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_rope_f32(params, dst, true);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_rope_back
<
< static void ggml_compute_forward_rope_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_rope_f16(params, dst, false);
< } break;
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_rope_f32(params, dst, false);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_conv_transpose_1d
<
< static void ggml_compute_forward_conv_transpose_1d_f16_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F16);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F32);
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nk = ne00*ne01*ne02;
<
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb10 == sizeof(float));
<
< if (ith == 0) {
< memset(params->wdata, 0, params->wsize);
<
< // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
< {
< ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
<
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
< ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< dst_data[i00*ne02 + i02] = src[i00];
< }
< }
< }
< }
<
< // permute source data (src1) from (L x Cin) to (Cin x L)
< {
< ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
< ggml_fp16_t * dst_data = wdata;
<
< for (int64_t i11 = 0; i11 < ne11; i11++) {
< const float * const src = (float *)((char *) src1->data + i11*nb11);
< for (int64_t i10 = 0; i10 < ne10; i10++) {
< dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
< }
< }
< }
<
< // need to zero dst since we are accumulating into it
< memset(dst->data, 0, ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
<
< const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
<
< // total rows in dst
< const int nr = ne1;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
< ggml_fp16_t * const wdata_src = wdata + nk;
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< float * dst_data = (float *)((char *) dst->data + i1*nb1);
< ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
< for (int i10 = 0; i10 < ne10; i10++) {
< const int i1n = i10*ne11;
< for (int i00 = 0; i00 < ne00; i00++) {
< float v = 0;
< ggml_vec_dot_f16(ne02, &v, 0,
< (ggml_fp16_t *) wdata_src + i1n, 0,
< (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
< dst_data[i10*s0 + i00] += v;
< }
< }
< }
< }
<
< static void ggml_compute_forward_conv_transpose_1d_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F32);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F32);
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nk = ne00*ne01*ne02;
<
< GGML_ASSERT(nb00 == sizeof(float));
< GGML_ASSERT(nb10 == sizeof(float));
<
< if (ith == 0) {
< memset(params->wdata, 0, params->wsize);
<
< // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
< {
< float * const wdata = (float *) params->wdata + 0;
<
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
< float * dst_data = wdata + i01*ne00*ne02;
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< dst_data[i00*ne02 + i02] = src[i00];
< }
< }
< }
< }
<
< // prepare source data (src1)
< {
< float * const wdata = (float *) params->wdata + nk;
< float * dst_data = wdata;
<
< for (int64_t i11 = 0; i11 < ne11; i11++) {
< const float * const src = (float *)((char *) src1->data + i11*nb11);
< for (int64_t i10 = 0; i10 < ne10; i10++) {
< dst_data[i10*ne11 + i11] = src[i10];
< }
< }
< }
<
< // need to zero dst since we are accumulating into it
< memset(dst->data, 0, ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
<
< const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
<
< // total rows in dst
< const int nr = ne1;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< float * const wdata = (float *) params->wdata + 0;
< float * const wdata_src = wdata + nk;
<
< for (int i1 = ir0; i1 < ir1; i1++) {
< float * dst_data = (float *)((char *) dst->data + i1*nb1);
< float * wdata_kernel = wdata + i1*ne02*ne00;
< for (int i10 = 0; i10 < ne10; i10++) {
< const int i1n = i10*ne11;
< for (int i00 = 0; i00 < ne00; i00++) {
< float v = 0;
< ggml_vec_dot_f32(ne02, &v, 0,
< wdata_src + i1n, 0,
< wdata_kernel + i00*ne02, 0, 1);
< dst_data[i10*s0 + i00] += v;
< }
< }
< }
< }
<
< static void ggml_compute_forward_conv_transpose_1d(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
< } break;
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_conv_transpose_1d_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_im2col_f32
< // src0: kernel [OC, IC, KH, KW]
< // src1: image [N, IC, IH, IW]
< // dst: result [N, OH, OW, IC*KH*KW]
< static void ggml_compute_forward_im2col_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F32);
<
< GGML_TENSOR_BINARY_OP_LOCALS;
<
< const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
< const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
< const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
< const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
< const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
< const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
< const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t N = is_2D ? ne13 : ne12;
< const int64_t IC = is_2D ? ne12 : ne11;
< const int64_t IH = is_2D ? ne11 : 1;
< const int64_t IW = ne10;
<
< const int64_t KH = is_2D ? ne01 : 1;
< const int64_t KW = ne00;
<
< const int64_t OH = is_2D ? ne2 : 1;
< const int64_t OW = ne1;
<
< int ofs0 = is_2D ? nb13 : nb12;
< int ofs1 = is_2D ? nb12 : nb11;
<
< GGML_ASSERT(nb10 == sizeof(float));
<
< // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
< {
< float * const wdata = (float *) dst->data;
<
< for (int64_t in = 0; in < N; in++) {
< for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
< for (int64_t iow = 0; iow < OW; iow++) {
< for (int64_t iic = ith; iic < IC; iic += nth) {
<
< // micro kernel
< float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
< const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
<
< for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
< for (int64_t ikw = 0; ikw < KW; ikw++) {
< const int64_t iiw = iow*s0 + ikw*d0 - p0;
< const int64_t iih = ioh*s1 + ikh*d1 - p1;
<
< if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
< dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
< } else {
< dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
< }
< }
< }
< }
< }
< }
< }
< }
< }
<
<
< // ggml_compute_forward_im2col_f16
< // src0: kernel [OC, IC, KH, KW]
< // src1: image [N, IC, IH, IW]
< // dst: result [N, OH, OW, IC*KH*KW]
< static void ggml_compute_forward_im2col_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F16);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F16);
<
< GGML_TENSOR_BINARY_OP_LOCALS;
<
< const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
< const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
< const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
< const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
< const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
< const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
< const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t N = is_2D ? ne13 : ne12;
< const int64_t IC = is_2D ? ne12 : ne11;
< const int64_t IH = is_2D ? ne11 : 1;
< const int64_t IW = ne10;
<
< const int64_t KH = is_2D ? ne01 : 1;
< const int64_t KW = ne00;
<
< const int64_t OH = is_2D ? ne2 : 1;
< const int64_t OW = ne1;
<
< int ofs0 = is_2D ? nb13 : nb12;
< int ofs1 = is_2D ? nb12 : nb11;
<
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb10 == sizeof(float));
<
< // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
< {
< ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
<
< for (int64_t in = 0; in < N; in++) {
< for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
< for (int64_t iow = 0; iow < OW; iow++) {
< for (int64_t iic = ith; iic < IC; iic += nth) {
<
< // micro kernel
< ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
< const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
<
< for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
< for (int64_t ikw = 0; ikw < KW; ikw++) {
< const int64_t iiw = iow*s0 + ikw*d0 - p0;
< const int64_t iih = ioh*s1 + ikh*d1 - p1;
<
< if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
< dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
< } else {
< dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
< }
< }
< }
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_im2col(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< switch (dst->type) {
< case GGML_TYPE_F16:
< {
< ggml_compute_forward_im2col_f16(params, dst);
< } break;
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_im2col_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_im2col_back_f32
<
< static void ggml_compute_forward_im2col_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
< const struct ggml_tensor * src1 = dst->src[1]; // convolution kernel
<
< GGML_ASSERT(src0->type == GGML_TYPE_F32);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F32);
<
< GGML_TENSOR_BINARY_OP_LOCALS;
<
< const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
< const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
< const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
< const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
< const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
< const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
< const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t N = is_2D ? ne3 : ne2;
< const int64_t IC = is_2D ? ne2 : ne1;
< const int64_t IH = is_2D ? ne1 : 1;
< const int64_t IW = ne0;
<
< const int64_t KH = is_2D ? ne11 : 1;
< const int64_t KW = ne10;
<
< const int64_t OH = is_2D ? ne02 : 1;
< const int64_t OW = ne01;
<
< int ofs0 = is_2D ? nb3 : nb2;
< int ofs1 = is_2D ? nb2 : nb1;
<
< GGML_ASSERT(nb0 == sizeof(float));
<
< // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
< {
< float * const wdata = (float *) dst->data;
<
< for (int64_t in = 0; in < N; in++) {
< for (int64_t iic = ith; iic < IC; iic += nth) {
< for (int64_t iih = 0; iih < IH; iih++) {
< for (int64_t iiw = 0; iiw < IW; iiw++) {
<
< // micro kernel
< float grad = 0.0f;
< for (int64_t ikh = 0; ikh < KH; ikh++) {
< for (int64_t ikw = 0; ikw < KW; ikw++) {
< // For s0 > 1 some values were skipped over in the forward pass.
< // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
< const int64_t tmpw = (iiw + p0 - ikw*d0);
< if (tmpw % s0 != 0) {
< continue;
< }
< const int64_t iow = tmpw / s0;
<
< // Equivalent logic as above except for s1.
< int64_t ioh;
< if (is_2D) {
< const int64_t tmph = iih + p1 - ikh*d1;
<
< if (tmph % s1 != 0) {
< continue;
< }
<
< ioh = tmph / s1;
< } else {
< ioh = 0;
< }
<
< if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
< continue;
< }
<
< const float * const grad_in = (const float *) src0->data
< + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
< grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
< }
< }
< float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
< dst_data[iih*IW + iiw] = grad;
< }
< }
< }
< }
< }
< }
<
< // ggml_compute_forward_conv_transpose_2d
<
< static void ggml_compute_forward_conv_transpose_2d(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F16);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F32);
<
< GGML_TENSOR_BINARY_OP_LOCALS
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nk = ne00*ne01*ne02*ne03;
<
< GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
< GGML_ASSERT(nb10 == sizeof(float));
<
< if (ith == 0) {
< memset(params->wdata, 0, params->wsize);
<
< // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
< {
< ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
<
< for (int64_t i03 = 0; i03 < ne03; i03++) {
< for (int64_t i02 = 0; i02 < ne02; i02++) {
< const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
< ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
< for (int64_t i01 = 0; i01 < ne01; i01++) {
< for (int64_t i00 = 0; i00 < ne00; i00++) {
< dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
< }
< }
< }
< }
< }
<
< // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
< {
< ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
< for (int i12 = 0; i12 < ne12; i12++) {
< for (int i11 = 0; i11 < ne11; i11++) {
< const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
< ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
< for (int i10 = 0; i10 < ne10; i10++) {
< dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
< }
< }
< }
< }
<
< memset(dst->data, 0, ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
<
< const int32_t stride = ggml_get_op_params_i32(dst, 0);
<
< // total patches in dst
< const int np = ne2;
<
< // patches per thread
< const int dp = (np + nth - 1)/nth;
<
< // patch range for this thread
< const int ip0 = dp*ith;
< const int ip1 = MIN(ip0 + dp, np);
<
< ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
< ggml_fp16_t * const wdata_src = wdata + nk;
<
< for (int i2 = ip0; i2 < ip1; i2++) { // Cout
< float * dst_data = (float *)((char *) dst->data + i2*nb2);
< ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
< for (int i11 = 0; i11 < ne11; i11++) {
< for (int i10 = 0; i10 < ne10; i10++) {
< const int i1n = i11*ne10*ne12 + i10*ne12;
< for (int i01 = 0; i01 < ne01; i01++) {
< for (int i00 = 0; i00 < ne00; i00++) {
< float v = 0;
< ggml_vec_dot_f16(ne03, &v, 0,
< wdata_src + i1n, 0,
< wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
< dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
< }
< }
< }
< }
< }
< }
<
< // ggml_compute_forward_pool_1d_sk_p0
<
< static void ggml_compute_forward_pool_1d_sk_p0(
< const struct ggml_compute_params * params,
< const enum ggml_op_pool op,
< const int k,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src = dst->src[0];
<
< assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
<
< if (params->ith != 0) {
< return;
< }
<
< const char * cdata = (const char *)src->data;
< const char * const data_end = cdata + ggml_nbytes(src);
< float * drow = (float *)dst->data;
<
< const int64_t rs = dst->ne[0];
<
< while (cdata < data_end) {
< const void * srow = (const void *)cdata;
< int j = 0;
< for (int64_t i = 0; i < rs; ++i) {
< switch (op) {
< case GGML_OP_POOL_AVG: drow[i] = 0; break;
< case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
< case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
< }
< for (int ki = 0; ki < k; ++ki) {
< const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
< switch (op) {
< case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
< case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
< case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
< }
< ++j;
< }
< switch (op) {
< case GGML_OP_POOL_AVG: drow[i] /= k; break;
< case GGML_OP_POOL_MAX: break;
< case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
< }
< }
<
< cdata += src->nb[1];
< drow += rs;
< }
< }
<
< // ggml_compute_forward_pool_1d
<
< static void ggml_compute_forward_pool_1d(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const int32_t * opts = (const int32_t *)dst->op_params;
< enum ggml_op_pool op = opts[0];
< const int k0 = opts[1];
< const int s0 = opts[2];
< const int p0 = opts[3];
< GGML_ASSERT(p0 == 0); // padding not supported
< GGML_ASSERT(k0 == s0); // only s = k supported
<
< ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
< }
<
< // ggml_compute_forward_pool_2d
<
< static void ggml_compute_forward_pool_2d(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src = dst->src[0];
<
< assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
<
< if (params->ith != 0) {
< return;
< }
<
< const int32_t * opts = (const int32_t *)dst->op_params;
< enum ggml_op_pool op = opts[0];
< const int k0 = opts[1];
< const int k1 = opts[2];
< const int s0 = opts[3];
< const int s1 = opts[4];
< const int p0 = opts[5];
< const int p1 = opts[6];
< const char * cdata = (const char*)src->data;
< const char * const data_end = cdata + ggml_nbytes(src);
<
< const int64_t px = dst->ne[0];
< const int64_t py = dst->ne[1];
< const int64_t pa = px * py;
<
< float * dplane = (float *)dst->data;
<
< const int ka = k0 * k1;
< const int offset0 = -p0;
< const int offset1 = -p1;
<
< while (cdata < data_end) {
< for (int oy = 0; oy < py; ++oy) {
< float * const drow = dplane + oy * px;
< for (int ox = 0; ox < px; ++ox) {
< float * const out = drow + ox;
< switch (op) {
< case GGML_OP_POOL_AVG: *out = 0; break;
< case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
< case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
< }
<
< const int ix = offset0 + ox * s0;
< const int iy = offset1 + oy * s1;
<
< for (int ky = 0; ky < k1; ++ky) {
< if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
< const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
< for (int kx = 0; kx < k0; ++kx) {
< int j = ix + kx;
< if (j < 0 || j >= src->ne[0]) continue;
< const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
< switch (op) {
< case GGML_OP_POOL_AVG: *out += srow_j; break;
< case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
< case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
< }
< }
< }
< switch (op) {
< case GGML_OP_POOL_AVG: *out /= ka; break;
< case GGML_OP_POOL_MAX: break;
< case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
< }
< }
< }
<
< cdata += src->nb[2];
< dplane += pa;
< }
< }
<
< // ggml_compute_forward_pool_2d_back
<
< static void ggml_compute_forward_pool_2d_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src = dst->src[0];
< const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
<
< assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
<
< if (params->ith != 0) {
< return;
< }
<
< const int32_t * opts = (const int32_t *)dst->op_params;
< enum ggml_op_pool op = opts[0];
< const int k0 = opts[1];
< const int k1 = opts[2];
< const int s0 = opts[3];
< const int s1 = opts[4];
< const int p0 = opts[5];
< const int p1 = opts[6];
<
< char * cdata = (char *) dst->data;
< const char * cdataf = (const char *) dstf->data;
< const char * const data_end = cdata + ggml_nbytes(dst);
<
< GGML_ASSERT(params->ith == 0);
< memset(cdata, 0, ggml_nbytes(dst));
<
< const int64_t px = src->ne[0];
< const int64_t py = src->ne[1];
< const int64_t pa = px * py;
<
< const float * splane = (const float *) src->data;
<
< const int ka = k0 * k1;
< const int offset0 = -p0;
< const int offset1 = -p1;
<
< while (cdata < data_end) {
< for (int oy = 0; oy < py; ++oy) {
< const float * const srow = splane + oy * px;
< for (int ox = 0; ox < px; ++ox) {
< const float grad0 = srow[ox];
<
< const int ix = offset0 + ox * s0;
< const int iy = offset1 + oy * s1;
<
< if (op == GGML_OP_POOL_MAX) {
< float maxval = -FLT_MAX;
< int kxmax = -1;
< int kymax = -1;
<
< for (int ky = 0; ky < k1; ++ky) {
< if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
< continue;
< }
< const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
< for (int kx = 0; kx < k0; ++kx) {
< int j = ix + kx;
< if (j < 0 || j >= dst->ne[0]) {
< continue;
< }
<
< const float val = dst->type == GGML_TYPE_F32 ?
< ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
< if (val <= maxval) {
< continue;
< }
<
< maxval = val;
< kxmax = kx;
< kymax = ky;
< }
< }
<
< if (kxmax == -1 || kymax == -1) {
< continue;
< }
<
< void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
< const int j = ix + kxmax;
< if (dst->type == GGML_TYPE_F32) {
< ((float *) drow)[j] += grad0;
< } else {
< ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
< }
< } else if (op == GGML_OP_POOL_AVG) {
< const float grad = grad0 / ka;
<
< for (int ky = 0; ky < k1; ++ky) {
< if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
< continue;
< }
< void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
< for (int kx = 0; kx < k0; ++kx) {
< int j = ix + kx;
< if (j < 0 || j >= dst->ne[0]) {
< continue;
< }
<
< if (dst->type == GGML_TYPE_F32) {
< ((float *) drow)[j] += grad;
< } else {
< ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
< }
< }
< }
< } else {
< GGML_ASSERT(false);
< }
< }
< }
<
< cdata += dst->nb[2];
< cdataf += dst->nb[2];
< splane += pa;
< }
< }
<
< // ggml_compute_forward_upscale
<
< static void ggml_compute_forward_upscale_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F32);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const float sf0 = (float)ne0/src0->ne[0];
< const float sf1 = (float)ne1/src0->ne[1];
< const float sf2 = (float)ne2/src0->ne[2];
< const float sf3 = (float)ne3/src0->ne[3];
<
< // TODO: optimize
<
< for (int64_t i3 = 0; i3 < ne3; i3++) {
< const int64_t i03 = i3 / sf3;
< for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
< const int64_t i02 = i2 / sf2;
< for (int64_t i1 = 0; i1 < ne1; i1++) {
< const int64_t i01 = i1 / sf1;
< for (int64_t i0 = 0; i0 < ne0; i0++) {
< const int64_t i00 = i0 / sf0;
<
< const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
< float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
<
< *y = *x;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_upscale(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_upscale_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
<
< // ggml_compute_forward_pad
<
< static void ggml_compute_forward_pad_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
< GGML_ASSERT( dst->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< float * dst_ptr = (float *) dst->data;
<
< // TODO: optimize
<
< for (int64_t i2 = 0; i2 < ne2; ++i2) {
< for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
< for (int64_t i0 = 0; i0 < ne0; ++i0) {
< for (int64_t i3 = 0; i3 < ne3; ++i3) {
< const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
<
< const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
<
< if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
< dst_ptr[dst_idx] = *src_ptr;
< } else {
< dst_ptr[dst_idx] = 0;
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_pad(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_pad_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_pad_reflect_1d
<
< static void ggml_compute_forward_pad_reflect_1d(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F32);
< GGML_ASSERT( dst->type == GGML_TYPE_F32);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int32_t * opts = (const int32_t *) dst->op_params;
< const int p0 = opts[0];
< const int p1 = opts[1];
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< for (int64_t i3 = 0; i3 < ne3; i3++) {
< for (int64_t i2 = 0; i2 < ne2; i2++) {
< for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
< float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
< float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
<
< ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
<
< for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
< for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
< }
< }
< }
< }
<
< // ggml_compute_forward_arange
<
< static void ggml_compute_forward_arange_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< GGML_ASSERT(dst->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const float start = ggml_get_op_params_f32(dst, 0);
< const float stop = ggml_get_op_params_f32(dst, 1);
< const float step = ggml_get_op_params_f32(dst, 2);
<
< const int64_t steps = (int64_t) ceilf((stop - start) / step);
<
< GGML_ASSERT(ggml_nelements(dst) == steps);
<
< for (int64_t i = ith; i < steps; i+= nth) {
< float value = start + step * i;
< ((float *)dst->data)[i] = value;
< }
< }
<
< static void ggml_compute_forward_arange(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< switch (dst->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_arange_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< static void ggml_compute_forward_timestep_embedding_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_ASSERT(src0->nb[0] == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const int dim = ggml_get_op_params_i32(dst, 0);
< const int max_period = ggml_get_op_params_i32(dst, 1);
<
< int half = dim / 2;
<
< for (int64_t i = 0; i < ne00; i++) {
< float * embed_data = (float *)((char *) dst->data + i*nb1);
< for (int64_t j = ith; j < half; j += nth) {
< float timestep = ((float *)src0->data)[i];
< float freq = (float)expf(-logf(max_period) * j / half);
< float arg = timestep * freq;
< embed_data[j] = cosf(arg);
< embed_data[j + half] = sinf(arg);
< }
< if (dim % 2 != 0 && ith == 0) {
< embed_data[dim] = 0.f;
< }
< }
< }
<
< static void ggml_compute_forward_timestep_embedding(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_timestep_embedding_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_argsort
<
< static void ggml_compute_forward_argsort_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< GGML_ASSERT(nb0 == sizeof(float));
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t nr = ggml_nrows(src0);
<
< enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
<
< for (int64_t i = ith; i < nr; i += nth) {
< int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
< const float * src_data = (float *)((char *) src0->data + i*nb01);
<
< for (int64_t j = 0; j < ne0; j++) {
< dst_data[j] = j;
< }
<
< // C doesn't have a functional sort, so we do a bubble sort instead
< for (int64_t j = 0; j < ne0; j++) {
< for (int64_t k = j + 1; k < ne0; k++) {
< if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
< (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
< int32_t tmp = dst_data[j];
< dst_data[j] = dst_data[k];
< dst_data[k] = tmp;
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_argsort(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_argsort_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_flash_attn_ext
<
< static void ggml_compute_forward_flash_attn_ext_f16(
< const struct ggml_compute_params * params,
< const struct ggml_tensor * q,
< const struct ggml_tensor * k,
< const struct ggml_tensor * v,
< const struct ggml_tensor * mask,
< struct ggml_tensor * dst) {
<
< GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
< GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
< GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
< GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
< GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
< GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
< GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
< GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t DK = nek0;
< const int64_t DV = nev0;
< const int64_t N = neq1;
<
< GGML_ASSERT(ne0 == DV);
< GGML_ASSERT(ne2 == N);
<
< // input tensor rows must be contiguous
< GGML_ASSERT(nbq0 == ggml_type_size(q->type));
< GGML_ASSERT(nbk0 == ggml_type_size(k->type));
< GGML_ASSERT(nbv0 == ggml_type_size(v->type));
<
< GGML_ASSERT(neq0 == DK);
< GGML_ASSERT(nek0 == DK);
< GGML_ASSERT(nev0 == DV);
<
< GGML_ASSERT(neq1 == N);
<
< // dst cannot be transposed or permuted
< GGML_ASSERT(nb0 == sizeof(float));
< GGML_ASSERT(nb0 <= nb1);
< GGML_ASSERT(nb1 <= nb2);
< GGML_ASSERT(nb2 <= nb3);
<
< // broadcast factors
< const int64_t rk2 = neq2/nek2;
< const int64_t rk3 = neq3/nek3;
<
< const int64_t rv2 = neq2/nev2;
< const int64_t rv3 = neq3/nev3;
<
< // parallelize by q rows using ggml_vec_dot_f32
<
< // total rows in q
< const int nr = neq1*neq2*neq3;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< float scale = 1.0f;
< float max_bias = 0.0f;
< float logit_softcap = 0.0f;
<
< memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
< memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
< memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
<
< if (logit_softcap != 0) {
< scale /= logit_softcap;
< }
<
< const uint32_t n_head = neq2;
< const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
<
< const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
< const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
<
< enum ggml_type const k_vec_dot_type = type_traits_cpu[k->type].vec_dot_type;
< ggml_from_float_t const q_to_vec_dot = type_traits_cpu[k_vec_dot_type].from_float;
< ggml_vec_dot_t const kq_vec_dot = type_traits_cpu[k->type].vec_dot;
< ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
<
< GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
< GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
<
< // loop over n_batch and n_head
< for (int ir = ir0; ir < ir1; ++ir) {
< // q indices
< const int iq3 = ir/(neq2*neq1);
< const int iq2 = (ir - iq3*neq2*neq1)/neq1;
< const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
<
< const uint32_t h = iq2; // head index
< const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
<
< float S = 0.0f; // sum
< float M = -INFINITY; // maximum KQ value
<
< float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
< float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
< ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
< ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
<
< if (v->type == GGML_TYPE_F16) {
< memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
< } else {
< memset(VKQ32, 0, DV*sizeof(float));
< }
<
< const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
<
< // k indices
< const int ik3 = iq3 / rk3;
< const int ik2 = iq2 / rk2;
<
< // v indices
< const int iv3 = iq3 / rv3;
< const int iv2 = iq2 / rv2;
<
< const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
< q_to_vec_dot(pq, Q_q, DK);
<
< // online softmax / attention
< // loop over n_kv and n_head_kv
< // ref: https://arxiv.org/pdf/2112.05682.pdf
< for (int64_t ic = 0; ic < nek1; ++ic) {
< const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
< if (mv == -INFINITY) {
< continue;
< }
<
< float s; // KQ value
<
< const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
< kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
<
< s = s*scale; // scale KQ value
<
< if (logit_softcap != 0.0f) {
< s = logit_softcap*tanhf(s);
< }
<
< s += mv; // apply mask
<
< const float Mold = M;
<
< float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
< float vs = 1.0f; // post-softmax KQ value, expf(s - M)
<
< const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
<
< if (v->type == GGML_TYPE_F16) {
< if (s > M) {
< // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
< M = s;
< ms = expf(Mold - M);
<
< // V = V*expf(Mold - M)
< ggml_vec_scale_f16(DV, VKQ16, ms);
< } else {
< // no new maximum, ms == 1.0f, vs != 1.0f
< vs = expf(s - M);
< }
<
< // V += v*expf(s - M)
< ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
< } else {
< if (s > M) {
< // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
< M = s;
< ms = expf(Mold - M);
<
< // V = V*expf(Mold - M)
< ggml_vec_scale_f32(DV, VKQ32, ms);
< } else {
< // no new maximum, ms == 1.0f, vs != 1.0f
< vs = expf(s - M);
< }
<
< v_to_float(v_data, V32, DV);
<
< // V += v*expf(s - M)
< ggml_vec_mad_f32(DV, VKQ32, V32, vs);
< }
<
< S = S*ms + vs; // scale and increment sum with partial sum
< }
<
< if (v->type == GGML_TYPE_F16) {
< for (int64_t d = 0; d < DV; ++d) {
< VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
< }
< }
<
< // V /= S
< const float S_inv = 1.0f/S;
< ggml_vec_scale_f32(DV, VKQ32, S_inv);
<
< // dst indices
< const int i1 = iq1;
< const int i2 = iq2;
< const int i3 = iq3;
<
< // original
< //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
<
< // permute(0, 2, 1, 3)
< memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
< }
< }
<
< static void ggml_compute_forward_flash_attn_ext(
< const struct ggml_compute_params * params,
< const struct ggml_tensor * q,
< const struct ggml_tensor * k,
< const struct ggml_tensor * v,
< const struct ggml_tensor * mask,
< struct ggml_tensor * dst) {
< switch (dst->op_params[3]) {
< case GGML_PREC_DEFAULT:
< case GGML_PREC_F32:
< {
< // uses F32 accumulators
< ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_flash_attn_back
<
< static void ggml_compute_forward_flash_attn_back_f32(
< const struct ggml_compute_params * params,
< const bool masked,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * q = dst->src[0];
< const struct ggml_tensor * k = dst->src[1];
< const struct ggml_tensor * v = dst->src[2];
< const struct ggml_tensor * d = dst->src[3];
<
< GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
< GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
< GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
< GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
< GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
< GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
< GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
< GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
< GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
< GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t D = neq0;
< const int64_t N = neq1;
< const int64_t P = nek1 - N;
< const int64_t M = P + N;
<
< const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
< const int mxDM = MAX(D, Mup);
<
< // GGML_ASSERT(ne0 == D);
< // GGML_ASSERT(ne1 == N);
< GGML_ASSERT(P >= 0);
<
< GGML_ASSERT(nbq0 == sizeof(float));
< GGML_ASSERT(nbk0 == sizeof(float));
< GGML_ASSERT(nbv0 == sizeof(float));
<
< GGML_ASSERT(neq0 == D);
< GGML_ASSERT(nek0 == D);
< GGML_ASSERT(nev1 == D);
< GGML_ASSERT(ned0 == D);
<
< GGML_ASSERT(neq1 == N);
< GGML_ASSERT(nek1 == N + P);
< GGML_ASSERT(nev1 == D);
< GGML_ASSERT(ned1 == N);
<
< // dst cannot be transposed or permuted
< GGML_ASSERT(nb0 == sizeof(float));
< GGML_ASSERT(nb0 <= nb1);
< GGML_ASSERT(nb1 <= nb2);
< GGML_ASSERT(nb2 <= nb3);
<
< if (ith == 0) {
< memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
< }
< ggml_barrier(params->threadpool);
<
< const int64_t elem_q = ggml_nelements(q);
< const int64_t elem_k = ggml_nelements(k);
<
< enum ggml_type result_type = dst->type;
< GGML_ASSERT(ggml_blck_size(result_type) == 1);
< const size_t tsize = ggml_type_size(result_type);
<
< const size_t offs_q = 0;
< const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
< const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
<
< void * grad_q = (char *) dst->data;
< void * grad_k = (char *) dst->data + offs_k;
< void * grad_v = (char *) dst->data + offs_v;
<
< const size_t nbgq1 = nb0*neq0;
< const size_t nbgq2 = nb0*neq0*neq1;
< const size_t nbgq3 = nb0*neq0*neq1*neq2;
<
< const size_t nbgk1 = nb0*nek0;
< const size_t nbgk2 = nb0*nek0*nek1;
< const size_t nbgk3 = nb0*nek0*nek1*neq2;
<
< const size_t nbgv1 = nb0*nev0;
< const size_t nbgv2 = nb0*nev0*nev1;
< const size_t nbgv3 = nb0*nev0*nev1*neq2;
<
< // parallelize by k rows using ggml_vec_dot_f32
<
< // total rows in k
< const int nr = nek2*nek3;
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< const float scale = 1.0f/sqrtf(D);
<
< //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
<
< // how often k2 (and v2) is repeated in q2
< int nrep = neq2/nek2;
<
< for (int ir = ir0; ir < ir1; ++ir) {
< // q indices
< const int ik3 = ir/(nek2);
< const int ik2 = ir - ik3*nek2;
<
< const int iq3 = ik3;
< const int id3 = ik3;
< const int iv3 = ik3;
< const int iv2 = ik2;
<
< for (int irep = 0; irep < nrep; ++irep) {
< const int iq2 = ik2 + irep*nek2;
< const int id2 = iq2;
<
< // (ik2 + irep*nek2) % nek2 == ik2
< for (int iq1 = 0; iq1 < neq1; ++iq1) {
< const int id1 = iq1;
<
< // not sure about CACHE_LINE_SIZE_F32..
< // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
< float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
< float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
<
< for (int i = M; i < Mup; ++i) {
< S[i] = -INFINITY;
< }
<
< const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
< for (int64_t ic = 0; ic < masked_begin; ++ic) {
< // k indices
< const int ik1 = ic;
<
< // S indices
< const int i1 = ik1;
<
< ggml_vec_dot_f32(neq0,
< S + i1, 0,
< (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
< (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
< }
<
< // scale
< ggml_vec_scale_f32(masked_begin, S, scale);
<
< for (int64_t i = masked_begin; i < M; i++) {
< S[i] = -INFINITY;
< }
<
< // softmax
< // exclude known -INF S[..] values from max and loop
< // dont forget to set their SM values to zero
< {
< float max = -INFINITY;
< ggml_vec_max_f32(masked_begin, &max, S);
<
< ggml_float sum = 0.0;
< {
< #ifdef GGML_SOFT_MAX_ACCELERATE
< max = -max;
< vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
< vvexpf(SM, SM, &Mup);
< ggml_vec_sum_f32(Mup, &sum, SM);
< #else
< sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
< #endif
< }
<
< assert(sum > 0.0);
<
< sum = 1.0/sum;
< ggml_vec_scale_f32(masked_begin, SM, sum);
<
< }
<
< // step-by-step explanation
< {
< // forward-process shape grads from backward process
< // parallel_for ik2,ik3:
< // for irep:
< // iq2 = ik2 + irep*nek2
< // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
< // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
< // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
< // for iq1:
< // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
< // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
< // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
< // S0 = -Inf [D,1,1,1]
< // ~S1[i] = dot(kcur[:D,i], qcur)
< // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
< // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
< // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
< // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
< // ~S5[i] = dot(vcur[:,i], S4)
< // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
< // ~dst[i,iq1,iq2,iq3] = S5[i] ^
< // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
< // dst backward-/ grad[dst] = d
< //
< // output gradients with their dependencies:
< //
< // grad[kcur] = grad[S1].T @ qcur
< // grad[S1] = diag_mask_zero(grad[S3], P) * scale
< // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
< // grad[S4] = grad[S5] @ vcur
< // grad[S4] = d[:D,id1,id2,id3] @ vcur
< // grad[qcur] = grad[S1] @ kcur
< // grad[vcur] = grad[S5].T @ S4
< // grad[vcur] = d[:D,id1,id2,id3].T @ S4
< //
< // in post-order:
< //
< // S1 = qcur @ kcur.T
< // S2 = S1 * scale
< // S3 = diag_mask_inf(S2, P)
< // S4 = softmax(S3)
< // grad[S4] = d[:D,id1,id2,id3] @ vcur
< // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
< // grad[S1] = diag_mask_zero(grad[S3], P) * scale
< // grad[qcur] = grad[S1] @ kcur
< // grad[kcur] = grad[S1].T @ qcur
< // grad[vcur] = d[:D,id1,id2,id3].T @ S4
< //
< // using less variables (SM=S4):
< //
< // S = diag_mask_inf(qcur @ kcur.T * scale, P)
< // SM = softmax(S)
< // S = d[:D,iq1,iq2,iq3] @ vcur
< // dot_SM_gradSM = dot(SM, S)
< // S = SM * (S - dot(SM, S))
< // S = diag_mask_zero(S, P) * scale
< //
< // grad[q][:D,iq1,iq2,iq3] += S @ kcur
< // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
< // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
< }
<
< // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
< // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
< // for ic:
< // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
< // exclude known future zero S[..] values from operation
< ggml_vec_set_f32(masked_begin, S, 0);
< for (int64_t ic = 0; ic < D; ++ic) {
< ggml_vec_mad_f32(masked_begin,
< S,
< (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
< *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
< }
<
< // S = SM * (S - dot(SM, S))
< float dot_SM_gradSM = 0;
< ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
< ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
< ggml_vec_mul_f32 (masked_begin, S, S, SM);
<
< // S = diag_mask_zero(S, P) * scale
< // already done by above ggml_vec_set_f32
<
< // exclude known zero S[..] values from operation
< ggml_vec_scale_f32(masked_begin, S, scale);
<
< // S shape [M,1]
< // SM shape [M,1]
< // kcur shape [D,M]
< // qcur shape [D,1]
< // vcur shape [M,D]
<
< // grad[q][:D,iq1,iq2,iq3] += S @ kcur
< // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
< // for ic:
< // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
< // exclude known zero S[..] values from loop
< for (int64_t ic = 0; ic < masked_begin; ++ic) {
< ggml_vec_mad_f32(D,
< (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
< (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
< S[ic]);
< }
<
< // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
< // for ic:
< // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
< // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
< // exclude known zero S[..] values from loop
< for (int64_t ic = 0; ic < masked_begin; ++ic) {
< ggml_vec_mad_f32(D,
< (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
< (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
< S[ic]);
< }
<
< // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
< // for ic:
< // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
< // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
< // exclude known zero SM[..] values from mad
< for (int64_t ic = 0; ic < D; ++ic) {
< ggml_vec_mad_f32(masked_begin,
< (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
< SM,
< *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_flash_attn_back(
< const struct ggml_compute_params * params,
< const bool masked,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * q = dst->src[0];
<
< switch (q->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_ssm_conv
<
< static void ggml_compute_forward_ssm_conv_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< const struct ggml_tensor * src0 = dst->src[0]; // conv_x
< const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nc = src1->ne[0]; // d_conv
< const int ncs = src0->ne[0]; // d_conv - 1 + n_t
< const int nr = src0->ne[1]; // d_inner
< const int n_t = dst->ne[1]; // tokens per sequence
< const int n_s = dst->ne[2]; // number of sequences in the batch
<
< GGML_ASSERT( dst->ne[0] == nr);
< GGML_ASSERT(src0->nb[0] == sizeof(float));
< GGML_ASSERT(src1->nb[0] == sizeof(float));
< GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
< const int ir = ir1 - ir0;
<
< for (int i3 = 0; i3 < n_s; ++i3) {
< for (int i2 = 0; i2 < n_t; ++i2) {
< // {d_conv - 1 + n_t, d_inner, n_seqs}
< // sliding window
< const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
< const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
< float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
<
< // TODO: transpose the output for smaller strides for big batches?
< // d_inner
< for (int i1 = 0; i1 < ir; ++i1) {
< // rowwise dot product
< // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
< float sumf = 0.0f;
<
< // d_conv
< for (int i0 = 0; i0 < nc; ++i0) {
< sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
< }
< x[i1] = sumf;
< }
< }
< }
< }
<
< static void ggml_compute_forward_ssm_conv(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< switch (dst->src[0]->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_ssm_conv_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_ssm_scan
<
< static void ggml_compute_forward_ssm_scan_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< const struct ggml_tensor * src0 = dst->src[0]; // s
< const struct ggml_tensor * src1 = dst->src[1]; // x
< const struct ggml_tensor * src2 = dst->src[2]; // dt
< const struct ggml_tensor * src3 = dst->src[3]; // A
< const struct ggml_tensor * src4 = dst->src[4]; // B
< const struct ggml_tensor * src5 = dst->src[5]; // C
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int64_t nc = src0->ne[0]; // d_state
< const int64_t nr = src0->ne[1]; // d_inner
< const int64_t n_t = src1->ne[1]; // number of tokens per sequence
< const int64_t n_s = src0->ne[2]; // number of sequences in the batch
<
< GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
< GGML_ASSERT(src0->nb[0] == sizeof(float));
< GGML_ASSERT(src1->nb[0] == sizeof(float));
< GGML_ASSERT(src2->nb[0] == sizeof(float));
< GGML_ASSERT(src3->nb[0] == sizeof(float));
< GGML_ASSERT(src4->nb[0] == sizeof(float));
< GGML_ASSERT(src5->nb[0] == sizeof(float));
< // required for the dot product between s and C
< GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
< // required for per-sequence offsets for states
< GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
< // required to get correct offset for state destination (i.e. src1->nb[3])
< GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
< const int ir = ir1 - ir0;
<
< for (int i3 = 0; i3 < n_s; ++i3) {
< for (int i2 = 0; i2 < n_t; ++i2) {
< const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
< const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
< const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
< const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
< const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
< const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
< float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
< float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
<
< // use the output as the source for the next token-wise iterations
< if (i2 > 0) { s0 = s; }
<
< // d_inner
< for (int i1 = 0; i1 < ir; ++i1) {
< // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
< float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
< float x_dt = x[i1] * dt_soft_plus;
< float sumf = 0.0f;
< // d_state
< for (int i0 = 0; i0 < nc; ++i0) {
< int i = i0 + i1*nc;
< // state = prev_state * dA + dB * x
< float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
< // y = rowwise_dotprod(state, C)
< sumf += state * C[i0];
< s[i] = state;
< }
< y[i1] = sumf;
< }
< }
< }
< }
<
< static void ggml_compute_forward_ssm_scan(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< switch (dst->src[0]->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_ssm_scan_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_win_part
<
< static void ggml_compute_forward_win_part_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< UNUSED(params);
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
< GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
<
< const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
< const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
< const int32_t w = ((const int32_t *)(dst->op_params))[2];
<
< assert(ne00 == ne0);
< assert(ne3 == nep0*nep1);
<
< // TODO: optimize / multi-thread
< for (int py = 0; py < nep1; ++py) {
< for (int px = 0; px < nep0; ++px) {
< const int64_t i3 = py*nep0 + px;
< for (int64_t i2 = 0; i2 < ne2; ++i2) {
< for (int64_t i1 = 0; i1 < ne1; ++i1) {
< for (int64_t i0 = 0; i0 < ne0; ++i0) {
< const int64_t i02 = py*w + i2;
< const int64_t i01 = px*w + i1;
< const int64_t i00 = i0;
<
< const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
< const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
<
< if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
< ((float *) dst->data)[i] = 0.0f;
< } else {
< ((float *) dst->data)[i] = ((float *) src0->data)[j];
< }
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_win_part(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_win_part_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_win_unpart
<
< static void ggml_compute_forward_win_unpart_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< UNUSED(params);
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
< GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
<
< const int32_t w = ((const int32_t *)(dst->op_params))[0];
<
< // padding
< const int px = (w - ne1%w)%w;
< //const int py = (w - ne2%w)%w;
<
< const int npx = (px + ne1)/w;
< //const int npy = (py + ne2)/w;
<
< assert(ne0 == ne00);
<
< // TODO: optimize / multi-thread
< for (int64_t i2 = 0; i2 < ne2; ++i2) {
< for (int64_t i1 = 0; i1 < ne1; ++i1) {
< for (int64_t i0 = 0; i0 < ne0; ++i0) {
< const int ip2 = i2/w;
< const int ip1 = i1/w;
<
< const int64_t i02 = i2%w;
< const int64_t i01 = i1%w;
< const int64_t i00 = i0;
<
< const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
< const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
<
< ((float *) dst->data)[j] = ((float *) src0->data)[i];
< }
< }
< }
< }
<
< static void ggml_compute_forward_win_unpart(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_win_unpart_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< //gmml_compute_forward_unary
<
< static void ggml_compute_forward_unary(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const enum ggml_unary_op op = ggml_get_unary_op(dst);
<
< switch (op) {
< case GGML_UNARY_OP_ABS:
< {
< ggml_compute_forward_abs(params, dst);
< } break;
< case GGML_UNARY_OP_SGN:
< {
< ggml_compute_forward_sgn(params, dst);
< } break;
< case GGML_UNARY_OP_NEG:
< {
< ggml_compute_forward_neg(params, dst);
< } break;
< case GGML_UNARY_OP_STEP:
< {
< ggml_compute_forward_step(params, dst);
< } break;
< case GGML_UNARY_OP_TANH:
< {
< ggml_compute_forward_tanh(params, dst);
< } break;
< case GGML_UNARY_OP_ELU:
< {
< ggml_compute_forward_elu(params, dst);
< } break;
< case GGML_UNARY_OP_RELU:
< {
< ggml_compute_forward_relu(params, dst);
< } break;
< case GGML_UNARY_OP_SIGMOID:
< {
< ggml_compute_forward_sigmoid(params, dst);
< } break;
< case GGML_UNARY_OP_GELU:
< {
< ggml_compute_forward_gelu(params, dst);
< } break;
< case GGML_UNARY_OP_GELU_QUICK:
< {
< ggml_compute_forward_gelu_quick(params, dst);
< } break;
< case GGML_UNARY_OP_SILU:
< {
< ggml_compute_forward_silu(params, dst);
< } break;
< case GGML_UNARY_OP_HARDSWISH:
< {
< ggml_compute_forward_hardswish(params, dst);
< } break;
< case GGML_UNARY_OP_HARDSIGMOID:
< {
< ggml_compute_forward_hardsigmoid(params, dst);
< } break;
< case GGML_UNARY_OP_EXP:
< {
< ggml_compute_forward_exp(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_get_rel_pos
<
< static void ggml_compute_forward_get_rel_pos_f16(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< UNUSED(params);
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
<
< GGML_TENSOR_UNARY_OP_LOCALS
<
< const int64_t w = ne1;
<
< ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
< ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
<
< for (int64_t i2 = 0; i2 < ne2; ++i2) {
< for (int64_t i1 = 0; i1 < ne1; ++i1) {
< const int64_t pos = (w - i1 - 1) + i2;
< for (int64_t i0 = 0; i0 < ne0; ++i0) {
< dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
< }
< }
< }
< }
<
< static void ggml_compute_forward_get_rel_pos(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F16:
< case GGML_TYPE_BF16:
< {
< ggml_compute_forward_get_rel_pos_f16(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_add_rel_pos
<
< static void ggml_compute_forward_add_rel_pos_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
< const struct ggml_tensor * src2 = dst->src[2];
<
< const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
< if (!inplace) {
< if (params->ith == 0) {
< memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
< }
< ggml_barrier(params->threadpool);
< }
< // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
<
< float * src1_data = (float *) src1->data;
< float * src2_data = (float *) src2->data;
< float * dst_data = (float *) dst->data;
<
< const int64_t ne10 = src1->ne[0];
< const int64_t ne11 = src1->ne[1];
< const int64_t ne12 = src1->ne[2];
< const int64_t ne13 = src1->ne[3];
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< // total patches in dst
< const int np = ne13;
<
< // patches per thread
< const int dp = (np + nth - 1)/nth;
<
< // patch range for this thread
< const int ip0 = dp*ith;
< const int ip1 = MIN(ip0 + dp, np);
<
< for (int64_t i13 = ip0; i13 < ip1; ++i13) {
< for (int64_t i12 = 0; i12 < ne12; ++i12) {
< for (int64_t i11 = 0; i11 < ne11; ++i11) {
< const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
< for (int64_t i10 = 0; i10 < ne10; ++i10) {
< const int64_t jp0 = jp1 + i10;
< const float src1_e = src1_data[jp0];
< const float src2_e = src2_data[jp0];
<
< const int64_t jdh = jp0 * ne10;
< const int64_t jdw = jdh - (ne10 - 1) * i10;
<
< for (int64_t j = 0; j < ne10; ++j) {
< dst_data[jdh + j ] += src2_e;
< dst_data[jdw + j*ne10] += src1_e;
< }
< }
< }
< }
< }
< }
<
< static void ggml_compute_forward_add_rel_pos(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_add_rel_pos_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_rwkv_wkv6
<
< static void ggml_compute_forward_rwkv_wkv6_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< const int64_t T = dst->src[1]->ne[2];
< const int64_t C = dst->ne[0];
< const int64_t HEADS = dst->src[1]->ne[1];
< const int64_t n_seqs = dst->src[5]->ne[1];
< const int64_t head_size = C / HEADS;
<
< float * dst_data = (float *) dst->data;
< float * state = ((float *) dst->data) + C * T;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< if (ith >= HEADS) {
< return;
< }
<
< const int h_start = (HEADS * ith) / nth;
< const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
< (HEADS * (ith + 1)) / nth : HEADS;
<
< float * k = (float *) dst->src[0]->data;
< float * v = (float *) dst->src[1]->data;
< float * r = (float *) dst->src[2]->data;
< float * time_faaaa = (float *) dst->src[3]->data;
< float * time_decay = (float *) dst->src[4]->data;
<
< size_t t_stride = HEADS * head_size; // Same to C
<
< size_t h_stride = C / HEADS;
< GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
< size_t h_stride_2d = head_size * head_size;
<
< if (ith == 0) {
< memset(dst_data, 0, T * C * sizeof(float));
< }
< ggml_barrier(params->threadpool);
<
<
< #if defined(__AVX__) && !defined(__AVX512F__)
< #define GGML_F32X GGML_F32x8
< #define GGML_F32X_SET1 GGML_F32x8_SET1
< #define GGML_F32X_LOAD GGML_F32x8_LOAD
< #define GGML_F32X_STORE GGML_F32x8_STORE
< #define GGML_F32X_MUL GGML_F32x8_MUL
< #define GGML_F32X_FMA GGML_F32x8_FMA
< #define WKV_VECTOR_SIZE 8
< #elif defined(__AVX512F__)
< #define GGML_F32X GGML_F32x16
< #define GGML_F32X_SET1 GGML_F32x16_SET1
< #define GGML_F32X_LOAD GGML_F32x16_LOAD
< #define GGML_F32X_STORE GGML_F32x16_STORE
< #define GGML_F32X_MUL GGML_F32x16_MUL
< #define GGML_F32X_FMA GGML_F32x16_FMA
< #define WKV_VECTOR_SIZE 16
< #elif defined(__ARM_NEON) && defined(__aarch64__)
< #define GGML_F32X GGML_F32x4
< #define GGML_F32X_SET1 GGML_F32x4_SET1
< #define GGML_F32X_LOAD GGML_F32x4_LOAD
< #define GGML_F32X_STORE GGML_F32x4_STORE
< #define GGML_F32X_MUL GGML_F32x4_MUL
< #define GGML_F32X_FMA GGML_F32x4_FMA
< #define WKV_VECTOR_SIZE 4
< #endif
<
< #ifdef WKV_VECTOR_SIZE
< const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
<
< for (int64_t t = 0; t < T; t++) {
< size_t t_offset = t * t_stride;
< size_t state_offset = head_size * C * (t / (T / n_seqs));
< float * state_cur = state + state_offset;
< float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
<
< for (int64_t h = h_start; h < h_end; h++) {
< size_t h_offset = h * h_stride;
< size_t t_h_offset = t_offset + h_offset;
< size_t h_2d_offset = h * h_stride_2d;
<
< for (int64_t i = 0; i < head_size; i++) {
< size_t t_h_i_offset = t_h_offset + i;
< size_t h_i_offset = h_offset + i;
< size_t h_2d_i_offset = h_2d_offset + i * h_stride;
<
< float k_val = k[t_h_i_offset];
< float r_val = r[t_h_i_offset];
< float time_faaaa_val = time_faaaa[h_i_offset];
< float time_decay_val = time_decay[t_h_i_offset];
<
< // Broadcast scalar values to vectors
< GGML_F32X k_vec = GGML_F32X_SET1(k_val);
< GGML_F32X r_vec = GGML_F32X_SET1(r_val);
< GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
< GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
<
< for (int64_t j = 0; j < vec_count; j++) {
< size_t base_j = j * WKV_VECTOR_SIZE;
< size_t t_h_j_offset = t_h_offset + base_j;
< size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
<
< // Load x elements at once
< GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
< GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
< GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
<
< // Compute kv = v * k
< GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
<
< // Compute temp = kv * time_faaaa + prev_state
< GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
<
< // Update dst: dst += temp * r
< dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
< GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
<
< // Update state: state = prev_state * time_decay + kv
< GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
< GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
< }
<
< // Handle remaining elements, this will not be used.
< for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
< size_t t_h_j_offset = t_h_offset + j;
< size_t h_2d_i_j_offset = h_2d_i_offset + j;
< float v_val = v[t_h_j_offset];
< float kv_val = v_val * k_val;
< float prev_state_val = state_prev[h_2d_i_j_offset];
< float temp_val = kv_val * time_faaaa_val + prev_state_val;
< dst_data[t_h_j_offset] += temp_val * r_val;
< state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
< }
< }
< }
< }
<
< #else
< // basically fused operations:
< // dst = r @ (time_faaaa * (k @ v) + state),
< // state = time_decay * state + (k @ v),
< // recursive through each token
< for (int64_t t = 0; t < T; t++) {
< size_t t_offset = t * t_stride;
< size_t state_offset = head_size * C * (t / (T / n_seqs));
< float * state_cur = state + state_offset;
< float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
<
< for (int64_t h = h_start; h < h_end; h++) {
< size_t h_offset = h * h_stride;
< size_t t_h_offset = t_offset + h_offset;
< size_t h_2d_offset = h * h_stride_2d;
<
< for (int64_t i = 0; i < head_size; i++) {
< size_t t_h_i_offset = t_h_offset + i;
< size_t h_i_offset = h_offset + i;
< size_t h_2d_i_offset = h_2d_offset + i * h_stride;
<
< float k_val = k[t_h_i_offset];
< float r_val = r[t_h_i_offset];
< float time_faaaa_val = time_faaaa[h_i_offset];
< // RWKV v6: different time_decay for each token.
< float time_decay_val = time_decay[t_h_i_offset];
<
< for (int64_t j = 0; j < head_size; j++) {
< size_t t_h_j_offset = t_h_offset + j;
< size_t h_2d_i_j_offset = h_2d_i_offset + j;
<
< float v_val = v[t_h_j_offset];
< float kv_val = v_val * k_val;
< float prev_state_val = state_prev[h_2d_i_j_offset];
< float temp_val = kv_val * time_faaaa_val + prev_state_val;
< dst_data[t_h_j_offset] += temp_val * r_val;
< state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
< }
< }
< }
< }
< #endif
< }
<
<
< static void ggml_compute_forward_rwkv_wkv6(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_rwkv_wkv6_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_gla
<
< static void ggml_compute_forward_gla_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< const int64_t T = dst->src[1]->ne[2];
< const int64_t C = dst->ne[0];
< const int64_t HEADS = dst->src[1]->ne[1];
< const int64_t n_seqs = dst->src[4]->ne[1];
< const int64_t head_size = C / HEADS;
< const float scale = ggml_get_op_params_f32(dst, 0);
<
< float * dst_data = (float *) dst->data;
< float * state = ((float *) dst->data) + C * T;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< if (ith >= HEADS) {
< return;
< }
<
< const int h_start = (HEADS * ith) / nth;
< const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
< (HEADS * (ith + 1)) / nth : HEADS;
<
< float * k = (float *) dst->src[0]->data;
< float * v = (float *) dst->src[1]->data;
< float * q = (float *) dst->src[2]->data;
< float * g = (float *) dst->src[3]->data;
<
< size_t t_stride = HEADS * head_size; // Same to C
<
< size_t h_stride = C / HEADS;
< GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
< size_t h_stride_2d = head_size * head_size;
<
< if (ith == 0) {
< memset(dst_data, 0, T * C * sizeof(float));
< }
< ggml_barrier(params->threadpool);
<
<
< #if defined(__AVX__) && !defined(__AVX512F__)
< #define GGML_F32X GGML_F32x8
< #define GGML_F32X_SET1 GGML_F32x8_SET1
< #define GGML_F32X_LOAD GGML_F32x8_LOAD
< #define GGML_F32X_STORE GGML_F32x8_STORE
< #define GGML_F32X_MUL GGML_F32x8_MUL
< #define GGML_F32X_FMA GGML_F32x8_FMA
< #define GLA_VECTOR_SIZE 8
< #elif defined(__AVX512F__)
< #define GGML_F32X GGML_F32x16
< #define GGML_F32X_SET1 GGML_F32x16_SET1
< #define GGML_F32X_LOAD GGML_F32x16_LOAD
< #define GGML_F32X_STORE GGML_F32x16_STORE
< #define GGML_F32X_MUL GGML_F32x16_MUL
< #define GGML_F32X_FMA GGML_F32x16_FMA
< #define GLA_VECTOR_SIZE 16
< #elif defined(__ARM_NEON) && defined(__aarch64__)
< #define GGML_F32X GGML_F32x4
< #define GGML_F32X_SET1 GGML_F32x4_SET1
< #define GGML_F32X_LOAD GGML_F32x4_LOAD
< #define GGML_F32X_STORE GGML_F32x4_STORE
< #define GGML_F32X_MUL GGML_F32x4_MUL
< #define GGML_F32X_FMA GGML_F32x4_FMA
< #define GLA_VECTOR_SIZE 4
< #endif
<
< #ifdef GLA_VECTOR_SIZE
< const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
<
< for (int64_t t = 0; t < T; t++) {
< size_t t_offset = t * t_stride;
< size_t state_offset = head_size * C * (t / (T / n_seqs));
< float * state_cur = state + state_offset;
< float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
<
< for (int64_t h = h_start; h < h_end; h++) {
< size_t h_offset = h * h_stride;
< size_t t_h_offset = t_offset + h_offset;
< size_t h_2d_offset = h * h_stride_2d;
<
< for (int64_t i = 0; i < head_size; i++) {
< size_t t_h_i_offset = t_h_offset + i;
< size_t h_2d_i_offset = h_2d_offset + i * h_stride;
<
< float k_val = k[t_h_i_offset];
< float q_val = q[t_h_i_offset] * scale;
< float g_val = g[t_h_i_offset];
<
< // Broadcast scalar values to vectors
< GGML_F32X k_vec = GGML_F32X_SET1(k_val);
< GGML_F32X q_vec = GGML_F32X_SET1(q_val);
< GGML_F32X g_vec = GGML_F32X_SET1(g_val);
<
< for (int64_t j = 0; j < vec_count; j++) {
< size_t base_j = j * GLA_VECTOR_SIZE;
< size_t t_h_j_offset = t_h_offset + base_j;
< size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
<
< // Load x elements at once
< GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
< GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
< GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
<
< // Compute kv = v * k
< GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
<
< // Compute temp = prev_state * g + kv
< GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
<
< // Update dst: dst += temp * q
< dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
< GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
<
< // Update state
< GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
< }
<
< // Handle remaining elements, this will not be used.
< for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
< size_t t_h_j_offset = t_h_offset + j;
< size_t h_2d_i_j_offset = h_2d_i_offset + j;
< float v_val = v[t_h_j_offset];
< float kv_val = v_val * k_val;
< float prev_state_val = state_prev[h_2d_i_j_offset];
< float temp_val = kv_val + prev_state_val * g_val;
< dst_data[t_h_j_offset] += temp_val * q_val;
< state_cur[h_2d_i_j_offset] = temp_val;
< }
< }
< }
< }
<
< #else
< for (int64_t t = 0; t < T; t++) {
< size_t t_offset = t * t_stride;
< size_t state_offset = head_size * C * (t / (T / n_seqs));
< float * state_cur = state + state_offset;
< float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
<
< for (int64_t h = h_start; h < h_end; h++) {
< size_t h_offset = h * h_stride;
< size_t t_h_offset = t_offset + h_offset;
< size_t h_2d_offset = h * h_stride_2d;
<
< for (int64_t i = 0; i < head_size; i++) {
< size_t t_h_i_offset = t_h_offset + i;
< size_t h_2d_i_offset = h_2d_offset + i * h_stride;
<
< float k_val = k[t_h_i_offset];
< float q_val = q[t_h_i_offset] * scale;
< float g_val = g[t_h_i_offset];
<
< for (int64_t j = 0; j < head_size; j++) {
< size_t t_h_j_offset = t_h_offset + j;
< size_t h_2d_i_j_offset = h_2d_i_offset + j;
<
< float v_val = v[t_h_j_offset];
< float kv_val = v_val * k_val;
< float prev_state_val = state_prev[h_2d_i_j_offset];
< float temp_val = prev_state_val * g_val + kv_val;
< dst_data[t_h_j_offset] += temp_val * q_val;
< state_cur[h_2d_i_j_offset] = temp_val;
< }
< }
< }
< }
< #endif
< }
<
<
< static void ggml_compute_forward_gla(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_gla_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_rwkv_wkv7
<
< static void ggml_compute_forward_rwkv_wkv7_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
< const int64_t T = dst->src[1]->ne[2];
< const int64_t C = dst->ne[0];
< const int64_t HEADS = dst->src[1]->ne[1];
< const int64_t n_seqs = dst->src[6]->ne[1];
< const int64_t head_size = C / HEADS;
<
< float * dst_data = (float *) dst->data;
< float * state = ((float *) dst->data) + C * T;
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< if (ith >= HEADS) {
< return;
< }
<
< const int h_start = (HEADS * ith) / nth;
< const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
< (HEADS * (ith + 1)) / nth : HEADS;
<
< float * r = (float *) dst->src[0]->data;
< float * w = (float *) dst->src[1]->data;
< float * k = (float *) dst->src[2]->data;
< float * v = (float *) dst->src[3]->data;
< float * a = (float *) dst->src[4]->data;
< float * b = (float *) dst->src[5]->data;
<
< int64_t t_stride = HEADS * head_size; // Same to C
<
< int64_t h_stride = C / HEADS;
< GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
< int64_t h_stride_2d = head_size * head_size;
<
< #if defined(GGML_SIMD)
< for (int64_t t = 0; t < T; t++) {
< int64_t t_offset = t * t_stride;
< int64_t state_offset = head_size * C * (t / (T / n_seqs));
< float * state_cur = state + state_offset;
< float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
<
< for (int64_t h = h_start; h < h_end; h++) {
< int64_t h_offset = h * h_stride;
< int64_t t_h_offset = t_offset + h_offset;
< int64_t h_2d_offset = h * h_stride_2d;
<
< for (int64_t ii = 0; ii < head_size; ii++) {
< int64_t t_h_i_offset = t_h_offset + ii;
< int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
<
< GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
<
< float sa = 0;
< {
< GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
< GGML_F32_VEC ax[GGML_F32_ARR];
< GGML_F32_VEC ay[GGML_F32_ARR];
< for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
< for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
< ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
< ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
< sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
< }
< }
< GGML_F32_VEC_REDUCE(sa, sum);
< }
<
< GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
<
< int64_t j = 0;
< GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
< for (; j < head_size; j += GGML_F32_STEP) {
< for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
< int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
< int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
<
< GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
< GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
< GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
< GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
<
< k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
<
< GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
< // kv + s * decay + sa * b
< state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
< state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
< GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
<
< result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
< }
< }
< GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
<
< // There shouldn't be left-overs though.
< for (; j < head_size; j++) {
< int64_t t_h_j_offset = t_h_offset + j;
< int64_t h_2d_i_j_offset = h_2d_i_offset + j;
<
< float r_val = r[t_h_j_offset];
< float w_val = w[t_h_j_offset];
< float k_val = k[t_h_j_offset];
< float b_val = b[t_h_j_offset];
< float kv_val = v[t_h_i_offset] * k_val;
<
< float prev_state_val = state_prev[h_2d_i_j_offset];
< state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
< dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
< }
< }
< }
< }
< #else
< for (int64_t t = 0; t < T; t++) {
< int64_t t_offset = t * t_stride;
< int64_t state_offset = head_size * C * (t / (T / n_seqs));
< float * state_cur = state + state_offset;
< float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
<
< for (int64_t h = h_start; h < h_end; h++) {
< int64_t h_offset = h * h_stride;
< int64_t t_h_offset = t_offset + h_offset;
< int64_t h_2d_offset = h * h_stride_2d;
<
< for (int64_t i = 0; i < head_size; i++) {
< int64_t t_h_i_offset = t_h_offset + i;
< int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
<
< float v_val = v[t_h_i_offset];
<
< float sa = 0, result = 0;
< for (int64_t j = 0; j < head_size; j++) {
< sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
< }
<
< for (int64_t j = 0; j < head_size; j++) {
< int64_t t_h_j_offset = t_h_offset + j;
< int64_t h_2d_i_j_offset = h_2d_i_offset + j;
<
< float r_val = r[t_h_j_offset];
< float w_val = w[t_h_j_offset];
< float k_val = k[t_h_j_offset];
< float b_val = b[t_h_j_offset];
< float kv_val = v_val * k_val;
< float prev_state_val = state_prev[h_2d_i_j_offset];
< state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
< result += state_cur[h_2d_i_j_offset] * r_val;
< }
< dst_data[t_h_i_offset] = result;
< }
< }
< }
< #endif
< }
<
<
< static void ggml_compute_forward_rwkv_wkv7(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_rwkv_wkv7_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_map_unary
<
< static void ggml_compute_forward_map_unary_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_unary_op_f32_t fun) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, dst));
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
<
< for (int i = 0; i < n; i++) {
< fun(nc,
< (float *) ((char *) dst->data + i*( dst->nb[1])),
< (float *) ((char *) src0->data + i*(src0->nb[1])));
< }
< }
<
< static void ggml_compute_forward_map_unary(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_unary_op_f32_t fun) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_map_unary_f32(params, dst, fun);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_map_binary
<
< static void ggml_compute_forward_map_binary_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_binary_op_f32_t fun) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< if (params->ith != 0) {
< return;
< }
<
< assert(ggml_is_contiguous_1(src0));
< assert(ggml_is_contiguous_1(src1));
< assert(ggml_is_contiguous_1(dst));
< assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
<
< const int n = ggml_nrows(src0);
< const int nc = src0->ne[0];
<
< for (int i = 0; i < n; i++) {
< fun(nc,
< (float *) ((char *) dst->data + i*( dst->nb[1])),
< (float *) ((char *) src0->data + i*(src0->nb[1])),
< (float *) ((char *) src1->data + i*(src1->nb[1])));
< }
< }
<
< static void ggml_compute_forward_map_binary(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_binary_op_f32_t fun) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_map_binary_f32(params, dst, fun);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_map_custom1
<
< static void ggml_compute_forward_map_custom1_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_custom1_op_f32_t fun) {
<
< const struct ggml_tensor * a = dst->src[0];
<
< if (params->ith != 0) {
< return;
< }
<
< fun(dst, a);
< }
<
< // ggml_compute_forward_map_custom2
<
< static void ggml_compute_forward_map_custom2_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_custom2_op_f32_t fun) {
<
< const struct ggml_tensor * a = dst->src[0];
< const struct ggml_tensor * b = dst->src[1];
<
< if (params->ith != 0) {
< return;
< }
<
< fun(dst, a, b);
< }
<
< // ggml_compute_forward_map_custom3
<
< static void ggml_compute_forward_map_custom3_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst,
< const ggml_custom3_op_f32_t fun) {
<
< const struct ggml_tensor * a = dst->src[0];
< const struct ggml_tensor * b = dst->src[1];
< const struct ggml_tensor * c = dst->src[1];
<
< if (params->ith != 0) {
< return;
< }
<
< fun(dst, a, b, c);
< }
<
< // ggml_compute_forward_map_custom1
<
< static void ggml_compute_forward_map_custom1(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * a = dst->src[0];
<
< struct ggml_map_custom1_op_params p;
< memcpy(&p, dst->op_params, sizeof(p));
<
< p.fun(dst, a, params->ith, params->nth, p.userdata);
< }
<
< // ggml_compute_forward_map_custom2
<
< static void ggml_compute_forward_map_custom2(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * a = dst->src[0];
< const struct ggml_tensor * b = dst->src[1];
<
< struct ggml_map_custom2_op_params p;
< memcpy(&p, dst->op_params, sizeof(p));
<
< p.fun(dst, a, b, params->ith, params->nth, p.userdata);
< }
<
< // ggml_compute_forward_map_custom3
<
< static void ggml_compute_forward_map_custom3(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * a = dst->src[0];
< const struct ggml_tensor * b = dst->src[1];
< const struct ggml_tensor * c = dst->src[2];
<
< struct ggml_map_custom3_op_params p;
< memcpy(&p, dst->op_params, sizeof(p));
<
< p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
< }
<
< // ggml_compute_forward_cross_entropy_loss
<
< static void ggml_compute_forward_cross_entropy_loss_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src1 = dst->src[1];
<
< GGML_ASSERT(src0->type == GGML_TYPE_F32);
< GGML_ASSERT(src1->type == GGML_TYPE_F32);
< GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
< GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
< GGML_ASSERT(ggml_are_same_shape(src0, src1));
< GGML_ASSERT(ggml_is_scalar(dst));
< GGML_ASSERT(dst->type == GGML_TYPE_F32);
<
< // TODO: handle transposed/permuted matrices
< const int64_t nc = src0->ne[0];
< const int64_t nr = ggml_nrows(src0);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< float * sums = (float *) params->wdata;
< float * st = ((float *) params->wdata) + nth + ith*nc;
< float sum_thread = 0.0f;
<
< GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
<
< // rows per thread
< const int64_t dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int64_t ir0 = dr*ith;
< const int64_t ir1 = MIN(ir0 + dr, nr);
<
< for (int64_t i1 = ir0; i1 < ir1; ++i1) {
< const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
< const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
<
< #ifndef NDEBUG
< for (int64_t i = 0; i < nc; ++i) {
< //printf("p[%d] = %f\n", i, p[i]);
< assert(!isnan(s0[i]));
< assert(!isnan(s1[i]));
< }
< #endif
<
< float max = -INFINITY;
< ggml_vec_max_f32(nc, &max, s0);
< const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
< assert(sum_softmax >= 0.0);
<
< ggml_vec_add1_f32(nc, st, st, -sum_softmax);
< ggml_vec_mul_f32(nc, st, st, s1);
<
< float sum_st = 0.0f;
< ggml_vec_sum_f32(nc, &sum_st, st);
< sum_thread += sum_st;
<
< #ifndef NDEBUG
< for (int64_t i = 0; i < nc; ++i) {
< assert(!isnan(st[i]));
< assert(!isinf(st[i]));
< }
< #endif
< }
< sums[ith] = sum_thread;
< ggml_barrier(params->threadpool);
<
< if (ith == 0) {
< float * dp = (float *) dst->data;
< ggml_vec_sum_f32(nth, dp, sums);
< dp[0] *= -1.0f / (float) nr;
< }
< }
<
< static void ggml_compute_forward_cross_entropy_loss(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_cross_entropy_loss_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< // ggml_compute_forward_cross_entropy_loss_back
<
< static void ggml_compute_forward_cross_entropy_loss_back_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
< const struct ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
< const struct ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
<
< GGML_ASSERT(ggml_is_contiguous(dst));
< GGML_ASSERT(ggml_is_contiguous(src0f));
< GGML_ASSERT(ggml_is_contiguous(src1f));
< GGML_ASSERT(ggml_is_contiguous(grad));
< GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
<
< const int64_t ith = params->ith;
< const int64_t nth = params->nth;
<
< // TODO: handle transposed/permuted matrices
< const int64_t nc = src0f->ne[0];
< const int64_t nr = ggml_nrows(src0f);
<
< // rows per thread
< const int64_t dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int64_t ir0 = dr*ith;
< const int64_t ir1 = MIN(ir0 + dr, nr);
<
< const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
<
< for (int64_t i1 = ir0; i1 < ir1; i1++) {
< float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
< const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
< const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
<
< #ifndef NDEBUG
< for (int64_t i = 0; i < nc; ++i) {
< //printf("p[%d] = %f\n", i, p[i]);
< assert(!isnan(s0[i]));
< assert(!isnan(s1[i]));
< }
< #endif
<
< // soft_max
< float max = -INFINITY;
< ggml_vec_max_f32(nc, &max, s0);
< const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
< assert(sum > 0.0);
< ggml_vec_scale_f32(nc, ds0, 1.0/sum);
<
< // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
< ggml_vec_sub_f32(nc, ds0, ds0, s1);
< ggml_vec_scale_f32(nc, ds0, d_by_nr);
<
< #ifndef NDEBUG
< for (int64_t i = 0; i < nc; ++i) {
< assert(!isnan(ds0[i]));
< assert(!isinf(ds0[i]));
< }
< #endif
< }
< }
<
< static void ggml_compute_forward_cross_entropy_loss_back(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
<
< static void ggml_compute_forward_opt_step_adamw_f32(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
< const struct ggml_tensor * src0_grad = dst->src[1];
< const struct ggml_tensor * src0_grad_m = dst->src[2];
< const struct ggml_tensor * src0_grad_v = dst->src[3];
< const struct ggml_tensor * adamw_params = dst->src[4];
<
< GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
< GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
< GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
< GGML_ASSERT(ggml_nelements(adamw_params) == 7);
<
< const int ith = params->ith;
< const int nth = params->nth;
<
< const int nr = ggml_nrows(src0);
<
< GGML_TENSOR_UNARY_OP_LOCALS
< GGML_ASSERT(nb00 == sizeof(float));
<
< // rows per thread
< const int dr = (nr + nth - 1)/nth;
<
< // row range for this thread
< const int ir0 = dr*ith;
< const int ir1 = MIN(ir0 + dr, nr);
<
< const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
< const float alpha = adamw_params_ptr[0];
< const float beta1 = adamw_params_ptr[1];
< const float beta2 = adamw_params_ptr[2];
< const float eps = adamw_params_ptr[3];
< const float wd = adamw_params_ptr[4];
< const float beta1h = adamw_params_ptr[5];
< const float beta2h = adamw_params_ptr[6];
<
< for (int ir = ir0; ir < ir1; ++ir) {
< const int64_t i03 = ir/(ne02*ne01);
< const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
< const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
<
< const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
<
< float * w = (float *) ((char *) src0->data + offset); // weight
< const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
< float * m = (float *) ((char *) src0_grad_m->data + offset);
< float * v = (float *) ((char *) src0_grad_v->data + offset);
<
< for (int i00 = 0; i00 < ne00; ++i00) {
< m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
< v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
<
< const float mh = m[i00]*beta1h;
< const float vh = sqrtf(v[i00]*beta2h) + eps;
<
< // The weight decay is applied independently of the Adam momenta m and v.
< // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
< // See: https://arxiv.org/pdf/1711.05101v3.pdf
< w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
< }
< }
< }
<
< static void ggml_compute_forward_opt_step_adamw(
< const struct ggml_compute_params * params,
< struct ggml_tensor * dst) {
<
< const struct ggml_tensor * src0 = dst->src[0];
<
< switch (src0->type) {
< case GGML_TYPE_F32:
< {
< ggml_compute_forward_opt_step_adamw_f32(params, dst);
< } break;
< default:
< {
< GGML_ABORT("fatal error");
< }
< }
< }
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment