Skip to content

Instantly share code, notes, and snippets.

@cmicat
Created February 10, 2017 08:27
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save cmicat/27ae148d93dff93e24c10d27b3cac064 to your computer and use it in GitHub Desktop.
Save cmicat/27ae148d93dff93e24c10d27b3cac064 to your computer and use it in GitHub Desktop.
增加了appendFormat的StringBuilder
package com.cmicat.lanVideoServer.util;
import java.util.Formatter;
import java.util.FormatterClosedException;
import java.util.IllegalFormatException;
import java.util.Locale;
/**
* 整合了 {@link java.lang.StringBuilder} 和 {@link Formatter}的功能。
* 给 {@link java.lang.StringBuilder } 加上了 appendFormat 函数
*/
public final class StringBuilder implements CharSequence, Appendable{
private final java.lang.StringBuilder sb;
private final Formatter formatter;
/**
* Constructs a string builder with no characters in it and an
* initial capacity of 16 characters.
*/
public StringBuilder() {
sb = new java.lang.StringBuilder(16);
formatter = new Formatter(sb);
}
/**
* Constructs a string builder with no characters in it and an
* initial capacity specified by the {@code capacity} argument.
*
* @param capacity the initial capacity.
* @throws NegativeArraySizeException if the {@code capacity}
* argument is less than {@code 0}.
*/
public StringBuilder(int capacity) {
sb = new java.lang.StringBuilder(capacity);
formatter = new Formatter(sb);
}
/**
* Constructs a string builder initialized to the contents of the
* specified string. The initial capacity of the string builder is
* {@code 16} plus the length of the string argument.
*
* @param str the initial contents of the buffer.
*/
public StringBuilder(String str) {
sb = new java.lang.StringBuilder(str.length() + 16);
append(str);
formatter = new Formatter(sb);
}
/**
* Constructs a string builder that contains the same characters
* as the specified {@code CharSequence}. The initial capacity of
* the string builder is {@code 16} plus the length of the
* {@code CharSequence} argument.
*
* @param seq the sequence to copy.
*/
public StringBuilder(CharSequence seq) {
sb = new java.lang.StringBuilder(seq.length() + 16);
append(seq);
formatter = new Formatter(sb);
}
@Override
public StringBuilder append(CharSequence s) {
sb.append(s);
return this;
}
/**
* Appends the string representation of the {@code Object} argument.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(Object)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param obj an {@code Object}.
* @return a reference to this object.
*/
public StringBuilder append(Object obj) {
sb.append(obj);
return this;
}
/**
* Appends the specified string to this character sequence.
* <p>
* The characters of the {@code String} argument are appended, in
* order, increasing the length of this sequence by the length of the
* argument. If {@code str} is {@code null}, then the four
* characters {@code "null"} are appended.
* <p>
* Let <i>n</i> be the length of this character sequence just prior to
* execution of the {@code append} method. Then the character at
* index <i>k</i> in the new character sequence is equal to the character
* at index <i>k</i> in the old character sequence, if <i>k</i> is less
* than <i>n</i>; otherwise, it is equal to the character at index
* <i>k-n</i> in the argument {@code str}.
*
* @param str a string.
* @return a reference to this object.
*/
public StringBuilder append(String str) {
sb.append(str);
return this;
}
/**
* Appends the specified {@code StringBuffer} to this sequence.
* <p>
* The characters of the {@code StringBuffer} argument are appended,
* in order, to this sequence, increasing the
* length of this sequence by the length of the argument.
* If {@code sb} is {@code null}, then the four characters
* {@code "null"} are appended to this sequence.
* <p>
* Let <i>n</i> be the length of this character sequence just prior to
* execution of the {@code append} method. Then the character at index
* <i>k</i> in the new character sequence is equal to the character at
* index <i>k</i> in the old character sequence, if <i>k</i> is less than
* <i>n</i>; otherwise, it is equal to the character at index <i>k-n</i>
* in the argument {@code sb}.
*
* @param sb the {@code StringBuffer} to append.
* @return a reference to this object.
*/
public StringBuilder append(StringBuffer sb) {
this.sb.append(sb);
return this;
}
/**
* Appends a subsequence of the specified {@code CharSequence} to this
* sequence.
* <p>
* Characters of the argument {@code s}, starting at
* index {@code start}, are appended, in order, to the contents of
* this sequence up to the (exclusive) index {@code end}. The length
* of this sequence is increased by the value of {@code end - start}.
* <p>
* Let <i>n</i> be the length of this character sequence just prior to
* execution of the {@code append} method. Then the character at
* index <i>k</i> in this character sequence becomes equal to the
* character at index <i>k</i> in this sequence, if <i>k</i> is less than
* <i>n</i>; otherwise, it is equal to the character at index
* <i>k+start-n</i> in the argument {@code s}.
* <p>
* If {@code s} is {@code null}, then this method appends
* characters as if the s parameter was a sequence containing the four
* characters {@code "null"}.
*
* @param s the sequence to append.
* @param start the starting index of the subsequence to be appended.
* @param end the end index of the subsequence to be appended.
* @return a reference to this object.
* @throws IndexOutOfBoundsException if
* {@code start} is negative, or
* {@code start} is greater than {@code end} or
* {@code end} is greater than {@code s.length()}
*/
@Override
public StringBuilder append(CharSequence s, int start, int end) {
sb.append(s, start, end);
return this;
}
/**
* Appends the string representation of the {@code char} array
* argument to this sequence.
* <p>
* The characters of the array argument are appended, in order, to
* the contents of this sequence. The length of this sequence
* increases by the length of the argument.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(char[])},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param str the characters to be appended.
* @return a reference to this object.
*/
public StringBuilder append(char[] str) {
sb.append(str);
return this;
}
/**
* Appends the string representation of a subarray of the
* {@code char} array argument to this sequence.
* <p>
* Characters of the {@code char} array {@code str}, starting at
* index {@code offset}, are appended, in order, to the contents
* of this sequence. The length of this sequence increases
* by the value of {@code len}.
* <p>
* The overall effect is exactly as if the arguments were converted
* to a string by the method {@link String#valueOf(char[],int,int)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param str the characters to be appended.
* @param offset the index of the first {@code char} to append.
* @param len the number of {@code char}s to append.
* @return a reference to this object.
* @throws IndexOutOfBoundsException
* if {@code offset < 0} or {@code len < 0}
* or {@code offset+len > str.length}
*/
public StringBuilder append(char[] str, int offset, int len) {
sb.append(str, offset, len);
return this;
}
/**
* Appends the string representation of the {@code boolean}
* argument to the sequence.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(boolean)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param b a {@code boolean}.
* @return a reference to this object.
*/
public StringBuilder append(boolean b) {
sb.append(b);
return this;
}
/**
* Appends the string representation of the {@code char}
* argument to this sequence.
* <p>
* The argument is appended to the contents of this sequence.
* The length of this sequence increases by {@code 1}.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(char)},
* and the character in that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param c a {@code char}.
* @return a reference to this object.
*/
@Override
public StringBuilder append(char c) {
sb.append(c);
return this;
}
/**
* Appends the string representation of the {@code int}
* argument to this sequence.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(int)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param i an {@code int}.
* @return a reference to this object.
*/
public StringBuilder append(int i) {
sb.append(i);
return this;
}
/**
* Appends the string representation of the {@code long}
* argument to this sequence.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(long)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param lng a {@code long}.
* @return a reference to this object.
*/
public StringBuilder append(long lng) {
sb.append(lng);
return this;
}
/**
* Appends the string representation of the {@code float}
* argument to this sequence.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(float)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param f a {@code float}.
* @return a reference to this object.
*/
public StringBuilder append(float f) {
sb.append(f);
return this;
}
/**
* Appends the string representation of the {@code double}
* argument to this sequence.
* <p>
* The overall effect is exactly as if the argument were converted
* to a string by the method {@link String#valueOf(double)},
* and the characters of that string were then
* {@link #append(String) appended} to this character sequence.
*
* @param d a {@code double}.
* @return a reference to this object.
*/
public StringBuilder append(double d) {
sb.append(d);
return this;
}
/**
* Appends the string representation of the {@code codePoint}
* argument to this sequence.
*
* <p> The argument is appended to the contents of this sequence.
* The length of this sequence increases by
* {@link Character#charCount(int) Character.charCount(codePoint)}.
*
* <p> The overall effect is exactly as if the argument were
* converted to a {@code char} array by the method
* {@link Character#toChars(int)} and the character in that array
* were then {@link #append(char[]) appended} to this character
* sequence.
*
* @param codePoint a Unicode code point
* @return a reference to this object.
* @exception IllegalArgumentException if the specified
* {@code codePoint} isn't a valid Unicode code point
* @since StringBuilder 1.5
*/
public StringBuilder appendCodePoint(int codePoint) {
sb.appendCodePoint(codePoint);
return this;
}
/**
* Removes the characters in a substring of this sequence.
* The substring begins at the specified {@code start} and extends to
* the character at index {@code end - 1} or to the end of the
* sequence if no such character exists. If
* {@code start} is equal to {@code end}, no changes are made.
*
* @param start The beginning index, inclusive.
* @param end The ending index, exclusive.
* @return This object.
* @throws StringIndexOutOfBoundsException if {@code start}
* is negative, greater than {@code length()}, or
* greater than {@code end}.
*/
public StringBuilder delete(int start, int end) {
sb.delete(start, end);
return this;
}
/**
* Removes the {@code char} at the specified position in this
* sequence. This sequence is shortened by one {@code char}.
*
* <p>Note: If the character at the given index is a supplementary
* character, this method does not remove the entire character. If
* correct handling of supplementary characters is required,
* determine the number of {@code char}s to remove by calling
* {@code Character.charCount(thisSequence.codePointAt(index))},
* where {@code thisSequence} is this sequence.
*
* @param index Index of {@code char} to remove
* @return This object.
* @throws StringIndexOutOfBoundsException if the {@code index}
* is negative or greater than or equal to
* {@code length()}.
*/
public StringBuilder deleteCharAt(int index) {
sb.deleteCharAt(index);
return this;
}
/**
* Replaces the characters in a substring of this sequence
* with characters in the specified {@code String}. The substring
* begins at the specified {@code start} and extends to the character
* at index {@code end - 1} or to the end of the
* sequence if no such character exists. First the
* characters in the substring are removed and then the specified
* {@code String} is inserted at {@code start}. (This
* sequence will be lengthened to accommodate the
* specified String if necessary.)
*
* @param start The beginning index, inclusive.
* @param end The ending index, exclusive.
* @param str String that will replace previous contents.
* @return This object.
* @throws StringIndexOutOfBoundsException if {@code start}
* is negative, greater than {@code length()}, or
* greater than {@code end}.
*/
public StringBuilder replace(int start, int end, String str) {
sb.replace(start, end, str);
return this;
}
/**
* Inserts the string representation of a subarray of the {@code str}
* array argument into this sequence. The subarray begins at the
* specified {@code offset} and extends {@code len} {@code char}s.
* The characters of the subarray are inserted into this sequence at
* the position indicated by {@code index}. The length of this
* sequence increases by {@code len} {@code char}s.
*
* @param index position at which to insert subarray.
* @param str A {@code char} array.
* @param offset the index of the first {@code char} in subarray to
* be inserted.
* @param len the number of {@code char}s in the subarray to
* be inserted.
* @return This object
* @throws StringIndexOutOfBoundsException if {@code index}
* is negative or greater than {@code length()}, or
* {@code offset} or {@code len} are negative, or
* {@code (offset+len)} is greater than
* {@code str.length}.
*/
public StringBuilder insert(int index, char[] str, int offset, int len) {
sb.insert(index, str, offset, len);
return this;
}
/**
* Inserts the string representation of the {@code Object}
* argument into this character sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(Object)},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param obj an {@code Object}.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, Object obj) {
sb.insert(offset, obj);
return this;
}
/**
* Inserts the string into this character sequence.
* <p>
* The characters of the {@code String} argument are inserted, in
* order, into this sequence at the indicated offset, moving up any
* characters originally above that position and increasing the length
* of this sequence by the length of the argument. If
* {@code str} is {@code null}, then the four characters
* {@code "null"} are inserted into this sequence.
* <p>
* The character at index <i>k</i> in the new character sequence is
* equal to:
* <ul>
* <li>the character at index <i>k</i> in the old character sequence, if
* <i>k</i> is less than {@code offset}
* <li>the character at index <i>k</i>{@code -offset} in the
* argument {@code str}, if <i>k</i> is not less than
* {@code offset} but is less than {@code offset+str.length()}
* <li>the character at index <i>k</i>{@code -str.length()} in the
* old character sequence, if <i>k</i> is not less than
* {@code offset+str.length()}
* </ul><p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param str a string.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, String str) {
sb.insert(offset, str);
return this;
}
/**
* Inserts the string representation of the {@code char} array
* argument into this sequence.
* <p>
* The characters of the array argument are inserted into the
* contents of this sequence at the position indicated by
* {@code offset}. The length of this sequence increases by
* the length of the argument.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(char[])},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param str a character array.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, char[] str) {
sb.insert(offset, str);
return this;
}
/**
* Inserts the specified {@code CharSequence} into this sequence.
* <p>
* The characters of the {@code CharSequence} argument are inserted,
* in order, into this sequence at the indicated offset, moving up
* any characters originally above that position and increasing the length
* of this sequence by the length of the argument s.
* <p>
* The result of this method is exactly the same as if it were an
* invocation of this object's
* {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
* method.
*
* <p>If {@code s} is {@code null}, then the four characters
* {@code "null"} are inserted into this sequence.
*
* @param dstOffset the offset.
* @param s the sequence to be inserted
* @return a reference to this object.
* @throws IndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int dstOffset, CharSequence s) {
sb.insert(dstOffset, s);
return this;
}
/**
* Inserts a subsequence of the specified {@code CharSequence} into
* this sequence.
* <p>
* The subsequence of the argument {@code s} specified by
* {@code start} and {@code end} are inserted,
* in order, into this sequence at the specified destination offset, moving
* up any characters originally above that position. The length of this
* sequence is increased by {@code end - start}.
* <p>
* The character at index <i>k</i> in this sequence becomes equal to:
* <ul>
* <li>the character at index <i>k</i> in this sequence, if
* <i>k</i> is less than {@code dstOffset}
* <li>the character at index <i>k</i>{@code +start-dstOffset} in
* the argument {@code s}, if <i>k</i> is greater than or equal to
* {@code dstOffset} but is less than {@code dstOffset+end-start}
* <li>the character at index <i>k</i>{@code -(end-start)} in this
* sequence, if <i>k</i> is greater than or equal to
* {@code dstOffset+end-start}
* </ul><p>
* The {@code dstOffset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
* <p>The start argument must be nonnegative, and not greater than
* {@code end}.
* <p>The end argument must be greater than or equal to
* {@code start}, and less than or equal to the length of s.
*
* <p>If {@code s} is {@code null}, then this method inserts
* characters as if the s parameter was a sequence containing the four
* characters {@code "null"}.
*
* @param dstOffset the offset in this sequence.
* @param s the sequence to be inserted.
* @param start the starting index of the subsequence to be inserted.
* @param end the end index of the subsequence to be inserted.
* @return a reference to this object.
* @throws IndexOutOfBoundsException if {@code dstOffset}
* is negative or greater than {@code this.length()}, or
* {@code start} or {@code end} are negative, or
* {@code start} is greater than {@code end} or
* {@code end} is greater than {@code s.length()}
*/
public StringBuilder insert(int dstOffset, CharSequence s, int start, int end) {
sb.insert(dstOffset, s, start, end);
return this;
}
/**
* Inserts the string representation of the {@code boolean}
* argument into this sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(boolean)},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param b a {@code boolean}.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, boolean b) {
sb.insert(offset, b);
return this;
}
/**
* Inserts the string representation of the {@code char}
* argument into this sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(char)},
* and the character in that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param c a {@code char}.
* @return a reference to this object.
* @throws IndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, char c) {
sb.insert(offset, c);
return this;
}
/**
* Inserts the string representation of the second {@code int}
* argument into this sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(int)},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param i an {@code int}.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, int i) {
sb.insert(offset, i);
return this;
}
/**
* Inserts the string representation of the {@code long}
* argument into this sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(long)},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param l a {@code long}.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, long l) {
sb.insert(offset, l);
return this;
}
/**
* Inserts the string representation of the {@code float}
* argument into this sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(float)},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param f a {@code float}.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, float f) {
sb.insert(offset, f);
return this;
}
/**
* Inserts the string representation of the {@code double}
* argument into this sequence.
* <p>
* The overall effect is exactly as if the second argument were
* converted to a string by the method {@link String#valueOf(double)},
* and the characters of that string were then
* {@link #insert(int,String) inserted} into this character
* sequence at the indicated offset.
* <p>
* The {@code offset} argument must be greater than or equal to
* {@code 0}, and less than or equal to the {@linkplain #length() length}
* of this sequence.
*
* @param offset the offset.
* @param d a {@code double}.
* @return a reference to this object.
* @throws StringIndexOutOfBoundsException if the offset is invalid.
*/
public StringBuilder insert(int offset, double d) {
sb.insert(offset, d);
return this;
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring. The integer returned is the smallest value
* <i>k</i> such that:
* <pre>{@code
* this.toString().startsWith(str, <i>k</i>)
* }</pre>
* is {@code true}.
*
* @param str any string.
* @return if the string argument occurs as a substring within this
* object, then the index of the first character of the first
* such substring is returned; if it does not occur as a
* substring, {@code -1} is returned.
*/
public int indexOf(String str) {
return sb.indexOf(str);
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring, starting at the specified index. The integer
* returned is the smallest value {@code k} for which:
* <pre>{@code
* k >= Math.min(fromIndex, this.length()) &&
* this.toString().startsWith(str, k)
* }</pre>
* If no such value of <i>k</i> exists, then -1 is returned.
*
* @param str the substring for which to search.
* @param fromIndex the index from which to start the search.
* @return the index within this string of the first occurrence of the
* specified substring, starting at the specified index.
*/
public int indexOf(String str, int fromIndex) {
return sb.indexOf(str, fromIndex);
}
/**
* Returns the index within this string of the rightmost occurrence
* of the specified substring. The rightmost empty string "" is
* considered to occur at the index value {@code this.length()}.
* The returned index is the largest value <i>k</i> such that
* <pre>{@code
* this.toString().startsWith(str, k)
* }</pre>
* is true.
*
* @param str the substring to search for.
* @return if the string argument occurs one or more times as a substring
* within this object, then the index of the first character of
* the last such substring is returned. If it does not occur as
* a substring, {@code -1} is returned.
*/
public int lastIndexOf(String str) {
return sb.lastIndexOf(str);
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring. The integer returned is the largest value <i>k</i>
* such that:
* <pre>{@code
* k <= Math.min(fromIndex, this.length()) &&
* this.toString().startsWith(str, k)
* }</pre>
* If no such value of <i>k</i> exists, then -1 is returned.
*
* @param str the substring to search for.
* @param fromIndex the index to start the search from.
* @return the index within this sequence of the last occurrence of the
* specified substring.
*/
public int lastIndexOf(String str, int fromIndex) {
return sb.lastIndexOf(str, fromIndex);
}
/**
* Causes this character sequence to be replaced by the reverse of
* the sequence. If there are any surrogate pairs included in the
* sequence, these are treated as single characters for the
* reverse operation. Thus, the order of the high-low surrogates
* is never reversed.
*
* Let <i>n</i> be the character length of this character sequence
* (not the length in {@code char} values) just prior to
* execution of the {@code reverse} method. Then the
* character at index <i>k</i> in the new character sequence is
* equal to the character at index <i>n-k-1</i> in the old
* character sequence.
*
* <p>Note that the reverse operation may result in producing
* surrogate pairs that were unpaired low-surrogates and
* high-surrogates before the operation. For example, reversing
* "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
* a valid surrogate pair.
*
* @return a reference to this object.
*/
public StringBuilder reverse() {
sb.reverse();
return this;
}
@Override
public String toString() {
return sb.toString();
}
/**
* Returns the length (character count).
*
* @return the length of the sequence of characters currently
* represented by this object
*/
@Override
public int length() {
return sb.length();
}
/**
* Returns the current capacity. The capacity is the amount of storage
* available for newly inserted characters, beyond which an allocation
* will occur.
*
* @return the current capacity
*/
public int capacity() {
return sb.capacity();
}
/**
* Ensures that the capacity is at least equal to the specified minimum.
* If the current capacity is less than the argument, then a new internal
* array is allocated with greater capacity. The new capacity is the
* larger of:
* <ul>
* <li>The {@code minimumCapacity} argument.
* <li>Twice the old capacity, plus {@code 2}.
* </ul>
* If the {@code minimumCapacity} argument is nonpositive, this
* method takes no action and simply returns.
* Note that subsequent operations on this object can reduce the
* actual capacity below that requested here.
*
* @param minimumCapacity the minimum desired capacity.
*/
public void ensureCapacity(int minimumCapacity) {
sb.ensureCapacity(minimumCapacity);
}
/**
* Attempts to reduce storage used for the character sequence.
* If the buffer is larger than necessary to hold its current sequence of
* characters, then it may be resized to become more space efficient.
* Calling this method may, but is not required to, affect the value
* returned by a subsequent call to the {@link #capacity()} method.
*/
public void trimToSize() {
sb.trimToSize();
}
/**
* Sets the length of the character sequence.
* The sequence is changed to a new character sequence
* whose length is specified by the argument. For every nonnegative
* index <i>k</i> less than {@code newLength}, the character at
* index <i>k</i> in the new character sequence is the same as the
* character at index <i>k</i> in the old sequence if <i>k</i> is less
* than the length of the old character sequence; otherwise, it is the
* null character {@code '\u005Cu0000'}.
*
* In other words, if the {@code newLength} argument is less than
* the current length, the length is changed to the specified length.
* <p>
* If the {@code newLength} argument is greater than or equal
* to the current length, sufficient null characters
* ({@code '\u005Cu0000'}) are appended so that
* length becomes the {@code newLength} argument.
* <p>
* The {@code newLength} argument must be greater than or equal
* to {@code 0}.
*
* @param newLength the new length
* @throws IndexOutOfBoundsException if the
* {@code newLength} argument is negative.
*/
public void setLength(int newLength) {
sb.setLength(newLength);
}
/**
* Returns the {@code char} value in this sequence at the specified index.
* The first {@code char} value is at index {@code 0}, the next at index
* {@code 1}, and so on, as in array indexing.
* <p>
* The index argument must be greater than or equal to
* {@code 0}, and less than the length of this sequence.
*
* <p>If the {@code char} value specified by the index is a
* <a href="Character.html#unicode">surrogate</a>, the surrogate
* value is returned.
*
* @param index the index of the desired {@code char} value.
* @return the {@code char} value at the specified index.
* @throws IndexOutOfBoundsException if {@code index} is
* negative or greater than or equal to {@code length()}.
*/
@Override
public char charAt(int index) {
return sb.charAt(index);
}
/**
* Returns the character (Unicode code point) at the specified
* index. The index refers to {@code char} values
* (Unicode code units) and ranges from {@code 0} to
* {@link #length()}{@code - 1}.
*
* <p> If the {@code char} value specified at the given index
* is in the high-surrogate range, the following index is less
* than the length of this sequence, and the
* {@code char} value at the following index is in the
* low-surrogate range, then the supplementary code point
* corresponding to this surrogate pair is returned. Otherwise,
* the {@code char} value at the given index is returned.
*
* @param index the index to the {@code char} values
* @return the code point value of the character at the
* {@code index}
* @exception IndexOutOfBoundsException if the {@code index}
* argument is negative or not less than the length of this
* sequence.
*/
public int codePointAt(int index) {
return sb.codePointAt(index);
}
/**
* Returns the character (Unicode code point) before the specified
* index. The index refers to {@code char} values
* (Unicode code units) and ranges from {@code 1} to {@link
* #length()}.
*
* <p> If the {@code char} value at {@code (index - 1)}
* is in the low-surrogate range, {@code (index - 2)} is not
* negative, and the {@code char} value at {@code (index -
* 2)} is in the high-surrogate range, then the
* supplementary code point value of the surrogate pair is
* returned. If the {@code char} value at {@code index -
* 1} is an unpaired low-surrogate or a high-surrogate, the
* surrogate value is returned.
*
* @param index the index following the code point that should be returned
* @return the Unicode code point value before the given index.
* @exception IndexOutOfBoundsException if the {@code index}
* argument is less than 1 or greater than the length
* of this sequence.
*/
public int codePointBefore(int index) {
return sb.codePointBefore(index);
}
/**
* Returns the number of Unicode code points in the specified text
* range of this sequence. The text range begins at the specified
* {@code beginIndex} and extends to the {@code char} at
* index {@code endIndex - 1}. Thus the length (in
* {@code char}s) of the text range is
* {@code endIndex-beginIndex}. Unpaired surrogates within
* this sequence count as one code point each.
*
* @param beginIndex the index to the first {@code char} of
* the text range.
* @param endIndex the index after the last {@code char} of
* the text range.
* @return the number of Unicode code points in the specified text
* range
* @exception IndexOutOfBoundsException if the
* {@code beginIndex} is negative, or {@code endIndex}
* is larger than the length of this sequence, or
* {@code beginIndex} is larger than {@code endIndex}.
*/
public int codePointCount(int beginIndex, int endIndex) {
return sb.codePointCount(beginIndex, endIndex);
}
/**
* Returns the index within this sequence that is offset from the
* given {@code index} by {@code codePointOffset} code
* points. Unpaired surrogates within the text range given by
* {@code index} and {@code codePointOffset} count as
* one code point each.
*
* @param index the index to be offset
* @param codePointOffset the offset in code points
* @return the index within this sequence
* @exception IndexOutOfBoundsException if {@code index}
* is negative or larger then the length of this sequence,
* or if {@code codePointOffset} is positive and the subsequence
* starting with {@code index} has fewer than
* {@code codePointOffset} code points,
* or if {@code codePointOffset} is negative and the subsequence
* before {@code index} has fewer than the absolute value of
* {@code codePointOffset} code points.
*/
public int offsetByCodePoints(int index, int codePointOffset) {
return sb.offsetByCodePoints(index, codePointOffset);
}
/**
* Characters are copied from this sequence into the
* destination character array {@code dst}. The first character to
* be copied is at index {@code srcBegin}; the last character to
* be copied is at index {@code srcEnd-1}. The total number of
* characters to be copied is {@code srcEnd-srcBegin}. The
* characters are copied into the subarray of {@code dst} starting
* at index {@code dstBegin} and ending at index:
* <pre>{@code
* dstbegin + (srcEnd-srcBegin) - 1
* }</pre>
*
* @param srcBegin start copying at this offset.
* @param srcEnd stop copying at this offset.
* @param dst the array to copy the data into.
* @param dstBegin offset into {@code dst}.
* @throws IndexOutOfBoundsException if any of the following is true:
* <ul>
* <li>{@code srcBegin} is negative
* <li>{@code dstBegin} is negative
* <li>the {@code srcBegin} argument is greater than
* the {@code srcEnd} argument.
* <li>{@code srcEnd} is greater than
* {@code this.length()}.
* <li>{@code dstBegin+srcEnd-srcBegin} is greater than
* {@code dst.length}
* </ul>
*/
public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin) {
sb.getChars(srcBegin, srcEnd, dst, dstBegin);
}
/**
* The character at the specified index is set to {@code ch}. This
* sequence is altered to represent a new character sequence that is
* identical to the old character sequence, except that it contains the
* character {@code ch} at position {@code index}.
* <p>
* The index argument must be greater than or equal to
* {@code 0}, and less than the length of this sequence.
*
* @param index the index of the character to modify.
* @param ch the new character.
* @throws IndexOutOfBoundsException if {@code index} is
* negative or greater than or equal to {@code length()}.
*/
public void setCharAt(int index, char ch) {
sb.setCharAt(index, ch);
}
/**
* Returns a new {@code String} that contains a subsequence of
* characters currently contained in this character sequence. The
* substring begins at the specified index and extends to the end of
* this sequence.
*
* @param start The beginning index, inclusive.
* @return The new string.
* @throws StringIndexOutOfBoundsException if {@code start} is
* less than zero, or greater than the length of this object.
*/
public String substring(int start) {
return sb.substring(start);
}
/**
* Returns a new character sequence that is a subsequence of this sequence.
*
* <p> An invocation of this method of the form
*
* <pre>{@code
* sb.subSequence(begin,&nbsp;end)}</pre>
*
* behaves in exactly the same way as the invocation
*
* <pre>{@code
* sb.substring(begin,&nbsp;end)}</pre>
*
* This method is provided so that this class can
* implement the {@link CharSequence} interface.
*
* @param start the start index, inclusive.
* @param end the end index, exclusive.
* @return the specified subsequence.
*
* @throws IndexOutOfBoundsException
* if {@code start} or {@code end} are negative,
* if {@code end} is greater than {@code length()},
* or if {@code start} is greater than {@code end}
* @spec JSR-51
*/
@Override
public CharSequence subSequence(int start, int end) {
return sb.subSequence(start, end);
}
/**
* Returns a new {@code String} that contains a subsequence of
* characters currently contained in this sequence. The
* substring begins at the specified {@code start} and
* extends to the character at index {@code end - 1}.
*
* @param start The beginning index, inclusive.
* @param end The ending index, exclusive.
* @return The new string.
* @throws StringIndexOutOfBoundsException if {@code start}
* or {@code end} are negative or greater than
* {@code length()}, or {@code start} is
* greater than {@code end}.
*/
public String substring(int start, int end) {
return sb.substring(start, end);
}
/**
* Returns the locale set by the construction of this StringBuilder's formatter.
*
* <p> The {@link #appendFormat(Locale, String, Object...) format} method
* for this object which has a locale argument does not change this value.
*
* @return {@code null} if no localization is applied, otherwise a
* locale
*/
public Locale locale() {
return formatter.locale();
}
/**
* Appends a formatted string to this object using the specified format string
* and arguments. The locale used is System Default Locale.
*
* @param format
* A format string as described in <a href="#syntax">Format string
* syntax</a>.
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* <cite>The Java&trade; Virtual Machine Specification</cite>.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the <a href="#detail">Details</a>
* section of the formatter class specification.
* @return This StringBuilder
*/
public StringBuilder appendFormat(String format, Object... args) {
formatter.format(format, args);
return this;
}
/**
* Appends a formatted string to this object using the
* specified locale, format string, and arguments.
*
* @param l
* The {@linkplain Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied. This does not change this object's locale that was
* set during construction.
*
* @param format
* A format string as described in <a href="#syntax">Format string
* syntax</a>
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* <cite>The Java&trade; Virtual Machine Specification</cite>.
*
* @throws IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the <a href="#detail">Details</a>
* section of the formatter class specification.
*
* @return This StringBuilder
*/
public StringBuilder appendFormat(Locale l, String format, Object... args) {
formatter.format(l, format, args);
return this;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment