Last active
May 12, 2022 18:47
-
-
Save cmt2/c2425575be47c1a574df02ebe4058d38 to your computer and use it in GitHub Desktop.
convert biogeobears output for plotting revgadgets
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
bgb_to_revgadgets <- function(results_path, geo_data_path, tree_path, area_names = NULL) { | |
# load biogeobears results object | |
load(results_path) | |
# change data directories in results object | |
res[["inputs"]]$geogfn <- geo_data_path | |
res[["inputs"]]$trfn <- tree_path | |
##### Process data for plotting ##### | |
# read in tree separately | |
tree <- RevGadgets::readTrees(paths = res[["inputs"]]$trfn) | |
states <- res$inputs$all_geog_states_list_usually_inferred_from_areas_maxareas | |
# create a dataframe with results in revgadgets compliant format | |
rev_data <- data.frame(matrix(nrow = nrow(res$relative_probs_of_each_state_at_branch_bottom_below_node_UPPASS), | |
ncol = 15)) | |
colnames(rev_data) <- c("end_state_1", "end_state_2", "end_state_3", | |
"end_state_1_pp", "end_state_2_pp", "end_state_3_pp", | |
"end_state_other_pp", | |
"start_state_1", "start_state_2", "start_state_3", | |
"start_state_1_pp", "start_state_2_pp", "start_state_3_pp", | |
"start_state_other_pp", | |
"node") | |
# get end states | |
for (i in 1:nrow(res$ML_marginal_prob_each_state_at_branch_top_AT_node)) { | |
row <- res$ML_marginal_prob_each_state_at_branch_top_AT_node[i,] | |
rev_data[i, 1] <- order(row,decreasing=T)[1] | |
rev_data[i, 2] <- order(row,decreasing=T)[2] | |
rev_data[i, 3] <- order(row,decreasing=T)[3] | |
rev_data[i, 4] <- row[order(row,decreasing=T)[1]] | |
rev_data[i, 5] <- row[order(row,decreasing=T)[2]] | |
rev_data[i, 6] <- row[order(row,decreasing=T)[3]] | |
rev_data[i, 7] <- sum(row[order(row,decreasing=T)[4:length(row)]]) | |
} | |
# get start states | |
for (i in 1:nrow(res$ML_marginal_prob_each_state_at_branch_bottom_below_node)) { | |
row <- res$ML_marginal_prob_each_state_at_branch_bottom_below_node[i,] | |
rev_data[i, 8] <- order(row,decreasing=T)[1] | |
rev_data[i, 9] <- order(row,decreasing=T)[2] | |
rev_data[i, 10] <- order(row,decreasing=T)[3] | |
rev_data[i, 11] <- row[order(row,decreasing=T)[1]] | |
rev_data[i, 12] <- row[order(row,decreasing=T)[2]] | |
rev_data[i, 13] <- row[order(row,decreasing=T)[3]] | |
rev_data[i, 14] <- sum(row[order(row,decreasing=T)[4:length(row)]]) | |
} | |
rev_data$node <- 1:nrow(res$ML_marginal_prob_each_state_at_branch_bottom_below_node) | |
# make better labels | |
tipranges <- getranges_from_LagrangePHYLIP(res[["inputs"]]$geogfn) | |
geo <- res$inputs$all_geog_states_list_usually_inferred_from_areas_maxareas | |
geo_num <- unlist(lapply(lapply(geo, as.character), paste0, collapse ="_")) | |
if (is.null(area_names)) { | |
area_names <- colnames(tipranges@df) | |
} | |
if (length(area_names) != length(colnames(tipranges@df))) stop("Number of specified area names is incorrect. Check your geo data file.") | |
number_codes <- 0:(length(area_names)-1) | |
geo_letters <- geo_num | |
recodes <- paste0(paste0(number_codes, " = '", area_names, "'"), collapse = "; ") | |
for (i in 1:length(geo_letters)) { | |
code <- geo_letters[i] | |
code_split <- unlist(strsplit(code, "_")) | |
geo_letters[i] <- paste0(car::recode(code_split, recodes), collapse = "") | |
} | |
#area_names <- rev(area_names) | |
label_dict <- data.frame(lab_num_short = 1:length(geo), | |
lab_num_long = geo_num, | |
lab_letters = geo_letters) | |
# replace short number codes with letters | |
not_state_cols <- c(grep("_pp", colnames(rev_data)), | |
grep("node", colnames(rev_data))) | |
state_cols <- c(1:ncol(rev_data))[!c(1:ncol(rev_data)) %in% not_state_cols] | |
for (i in state_cols) { # loop through by column indices for the state columns | |
col <- as.character(rev_data[,i]) | |
for (j in 1:length(col)) { # loop through each item in the column and replace with letters | |
col[j] <- label_dict$lab_letters[which(label_dict$lab_num_short == col[j])] | |
} | |
rev_data[,i] <- col | |
} | |
#change "NA" to NA | |
rev_data %>% | |
naniar::replace_with_na_all(condition = ~.x == "NA") -> rev_data | |
# change any NAs in PP columns to 0 | |
pp_cols <- grep("_pp", colnames(rev_data)) | |
for (p in pp_cols) { rev_data[ ,p][is.na(rev_data[ ,p])] <- 0 } | |
# make treedata object (combine data and tree) | |
tibble::as_tibble(tree[[1]][[1]]) %>% | |
full_join(rev_data, by = 'node') %>% | |
as.treedata() -> rev_treedata | |
#add list of states | |
attributes(rev_treedata)$state_labels <- as.character(na.omit(unique(unlist(rev_data[,c(1:3, 8:10)])))) | |
return(rev_treedata) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment