Created
May 14, 2018 21:59
-
-
Save coderfi/a00174e79d7ca694d8c1888d01462aec to your computer and use it in GitHub Desktop.
MultiLabel classifier example using Keras + Tensorflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
''' MultiLabel classifier example using Keras + Tensorflow. | |
Based on | |
* https://www.depends-on-the-definition.com/guide-to-multi-label-classification-with-neural-networks/ | |
* https://www.depends-on-the-definition.com/classifying-genres-of-movies-by-looking-at-the-poster-a-neural-approach/ | |
* https://keras.io/getting-started/sequential-model-guide/#examples | |
''' | |
from keras.models import Sequential | |
from keras.layers import Dense | |
import numpy as np | |
import random | |
nn = Sequential() | |
nn.add(Dense(10, activation="relu", input_shape=(10,))) | |
nn.add(Dense(5, activation='sigmoid')) | |
nn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | |
x_train = np.random.random((1000, 10)) | |
y_train = np.random.randint(2, size=(1000, 5)) | |
x_test = np.random.random((100, 10)) | |
y_test = np.random.randint(2, size=(100, 5)) | |
nn.fit(x_train, y_train, batch_size=16, epochs=5, verbose=1, validation_split=0.1) | |
score = nn.evaluate(x_test, y_test, batch_size=128) | |
print("Evaluation score:", score) | |
x, y = x_test[:1], y_test[:1] | |
print("X:\n\t", x[0]) | |
print("Y (Actual):\n\t", y[0]) | |
prediction = nn.predict(x) | |
print("Prediction:\n\t", prediction) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment