Created
May 28, 2019 20:49
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// @generated from tools/autograd/templates/python_torch_functions.cpp | |
// Python bindings for torch.* functions implemented through ATen. | |
// | |
// The functions are bound as static methods on a class | |
// torch._C._VariableFunctions which is also aliased as Variable._torch | |
// and also copied into 'torch' module. | |
#include <Python.h> | |
#include "python_torch_functions_dispatch.h" | |
#include "torch/csrc/autograd/python_variable.h" | |
#include "torch/csrc/autograd/utils/wrap_outputs.h" | |
#include "torch/csrc/Dtype.h" | |
#include "torch/csrc/DynamicTypes.h" | |
#include "torch/csrc/Exceptions.h" | |
#include "torch/csrc/utils/python_arg_parser.h" | |
#include "torch/csrc/utils/tensor_layouts.h" | |
#include "torch/csrc/utils/tensor_new.h" | |
#include "torch/csrc/utils/tensor_numpy.h" | |
#include "torch/csrc/jit/tracer.h" | |
#include "torch/csrc/autograd/generated/variable_factories.h" | |
#include "torch/csrc/utils/structseq.h" | |
#include <ATen/ATen.h> | |
#include <functional> | |
#include <initializer_list> | |
#include <stdexcept> | |
#include <utility> | |
using at::Tensor; | |
using at::Device; | |
using at::Scalar; | |
using at::ScalarType; | |
using at::Backend; | |
using at::OptionalDeviceGuard; | |
using at::DeviceGuard; | |
using at::TensorOptions; | |
using namespace torch::autograd::utils; | |
namespace torch { namespace autograd { | |
static void check_out_type_matches(Tensor result, | |
ScalarType scalarType, bool scalarType_is_none, | |
const THPLayout& layout, bool layout_is_none, | |
const Device& device, bool device_is_none) { | |
if (scalarType_is_none && layout_is_none && device_is_none) { // common case | |
return; | |
} | |
if (!scalarType_is_none && result.scalar_type() != scalarType) { | |
AT_ERROR( | |
"dtype ", scalarType, | |
" does not match dtype of out parameter (", result.scalar_type(), ")"); | |
} | |
auto scalarType_arg = scalarType_is_none ? result.scalar_type() : scalarType; | |
auto layout_arg = layout_is_none ? *torch::getLayout(result.type().backend()) : layout; | |
auto device_type_arg = device_is_none ? result.device().type() : device.type(); | |
const auto& type = torch::getVariableType(scalarType_arg, layout_arg, device_type_arg); | |
if (result.dispatch_type() != type) { | |
AT_ERROR( | |
"type corresponding to ", type.toString(), | |
" does not match type of out parameter (", result.type().toString(), ")"); | |
} | |
} | |
inline Tensor dispatch_arange(Scalar end, Tensor result) { | |
AutoNoGIL no_gil; | |
return at::arange_out(result, end); | |
} | |
inline Tensor dispatch_arange(Scalar end, const TensorOptions& options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
return torch::arange(end, options); | |
} | |
inline Tensor dispatch_arange(Scalar start, Scalar end, Scalar step, Tensor result) { | |
AutoNoGIL no_gil; | |
return at::arange_out(result, start, end, step); | |
} | |
inline Tensor dispatch_arange(Scalar start, Scalar end, Scalar step, const TensorOptions& options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
return torch::arange(start, end, step, options); | |
} | |
static inline bool allIntegral(std::initializer_list<std::reference_wrapper<Scalar>> l) { | |
for (Scalar& s : l) { | |
if (!s.isIntegral()) { | |
return false; | |
} | |
} | |
return true; | |
} | |
static PyObject * THPVariable_arange(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"arange(Scalar end, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"arange(Scalar start, Scalar end, Scalar step=1, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
auto end = r.scalar(0); | |
// NOTE: r.scalartype(X) gives the default dtype if r.isNone(X) | |
auto scalarType = r.isNone(2) && allIntegral({end}) ? at::ScalarType::Long : r.scalartype(2); | |
const auto options = TensorOptions() | |
.dtype(scalarType) | |
.device(r.device(4)) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_arange(end, options)); | |
} else { | |
TORCH_CHECK(!r.toBool(5), " `pin_memory` and `out` parameters are incompatible"); | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_arange(r.scalar(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
auto start = r.scalar(0); | |
auto end = r.scalar(1); | |
auto step = r.scalar(2); | |
// NOTE: r.scalartype(X) gives the default dtype if r.isNone(X) | |
auto scalarType = r.isNone(4) && allIntegral({start, end, step}) ? at::ScalarType::Long : r.scalartype(4); | |
const auto options = TensorOptions() | |
.dtype(scalarType) | |
.device(r.device(6)) | |
.layout(r.layout(5).layout) | |
.requires_grad(r.toBool(8)) | |
.pinned_memory(r.toBool(7)); | |
return wrap(dispatch_arange(start, end, step, options)); | |
} else { | |
TORCH_CHECK(!r.toBool(7), " `pin_memory` and `out` parameters are incompatible"); | |
check_out_type_matches(r.tensor(3), r.scalartype(4), r.isNone(4), r.layout(5), r.isNone(5), | |
r.device(6), r.isNone(6)); | |
return wrap(dispatch_arange(r.scalar(0), r.scalar(1), r.scalar(2), r.tensor(3)).set_requires_grad(r.toBool(8))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
inline Tensor dispatch_range(Scalar start, Scalar end, Scalar step, Tensor result) { | |
AutoNoGIL no_gil; | |
OptionalDeviceGuard device_guard(device_of(result)); | |
return at::range_out(result, start, end, step); | |
} | |
inline Tensor dispatch_range(Scalar start, Scalar end, Scalar step, const TensorOptions& options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
DeviceGuard device_guard(options.device()); | |
return torch::range(start, end, step, options); | |
} | |
static PyObject * THPVariable_range(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"range(Scalar start, Scalar end, Scalar step=1, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool requires_grad=False)", | |
}); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
PyErr_WarnEx(PyExc_UserWarning, "torch.range is deprecated in favor of torch.arange " | |
"and will be removed in 0.5. Note that arange generates values in [start; end), " | |
"not [start; end].", 1); | |
if (r.isNone(3)) { | |
const auto options = TensorOptions() | |
.dtype(r.scalartype(4)) | |
.device(r.device(6)) | |
.layout(r.layout(5).layout) | |
.requires_grad(r.toBool(7)); | |
return wrap(dispatch_range(r.scalar(0), r.scalar(1), r.scalar(2), options)); | |
} else { | |
check_out_type_matches(r.tensor(3), r.scalartype(4), r.isNone(4), | |
r.layout(5), r.isNone(5), | |
r.device(6), r.isNone(6)); | |
return wrap(dispatch_range(r.scalar(0), r.scalar(1), r.scalar(2), r.tensor(3)).set_requires_grad(r.toBool(7))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
inline Tensor dispatch_randint(int64_t high, IntArrayRef size, Generator * generator, Tensor result) { | |
AutoNoGIL no_gil; | |
return at::randint_out(result, high, size, generator); | |
} | |
inline Tensor dispatch_randint(int64_t high, IntArrayRef size, Generator * generator, const TensorOptions & options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
return torch::randint(high, size, generator, options); | |
} | |
inline Tensor dispatch_randint(int64_t high, IntArrayRef size, Tensor result) { | |
AutoNoGIL no_gil; | |
return at::randint_out(result, high, size); | |
} | |
inline Tensor dispatch_randint(int64_t high, IntArrayRef size, const TensorOptions & options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
return torch::randint(high, size, options); | |
} | |
inline Tensor dispatch_randint(int64_t low, int64_t high, IntArrayRef size, Generator * generator, Tensor result) { | |
AutoNoGIL no_gil; | |
return at::randint_out(result, low, high, size, generator); | |
} | |
inline Tensor dispatch_randint(int64_t low, int64_t high, IntArrayRef size, Generator * generator, const TensorOptions & options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
return torch::randint(low, high, size, generator, options); | |
} | |
inline Tensor dispatch_randint(int64_t low, int64_t high, IntArrayRef size, Tensor result) { | |
AutoNoGIL no_gil; | |
return at::randint_out(result, low, high, size); | |
} | |
inline Tensor dispatch_randint(int64_t low, int64_t high, IntArrayRef size, const TensorOptions & options) { | |
maybe_initialize_cuda(options); | |
AutoNoGIL no_gil; | |
return torch::randint(low, high, size, options); | |
} | |
static PyObject * THPVariable_randint(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randint(int64_t high, IntArrayRef size, *, Generator generator, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool requires_grad=False)", | |
"randint(int64_t high, IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool requires_grad=False)", | |
"randint(int64_t low, int64_t high, IntArrayRef size, *, Generator generator, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool requires_grad=False)", | |
"randint(int64_t low, int64_t high, IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool requires_grad=False)", | |
}, /*traceable=*/false); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
auto high = r.toInt64(0); | |
auto size = r.intlist(1); | |
auto generator = r.generator(2); | |
// NOTE: r.scalartype(X) gives the default dtype if r.isNone(X) | |
auto dtype = r.scalartypeWithDefault(4, at::ScalarType::Long); | |
auto device = r.device(6); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(5).layout) | |
.requires_grad(r.toBool(7)); | |
return wrap(dispatch_randint(high, size, generator, options)); | |
} else { | |
check_out_type_matches(r.tensor(3), r.scalartype(4), r.isNone(4), | |
r.layout(5), r.isNone(5), | |
r.device(6), r.isNone(6)); | |
return wrap(dispatch_randint(r.toInt64(0), r.intlist(1), r.generator(2), r.tensor(3)).set_requires_grad(r.toBool(7))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
auto high = r.toInt64(0); | |
auto size = r.intlist(1); | |
// NOTE: r.scalartype(X) gives the default dtype if r.isNone(X) | |
auto dtype = r.scalartypeWithDefault(3, at::ScalarType::Long); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(6)); | |
return wrap(dispatch_randint(high, size, options)); | |
} else { | |
check_out_type_matches(r.tensor(2), r.scalartype(3), r.isNone(3), | |
r.layout(4), r.isNone(4), | |
r.device(5), r.isNone(5)); | |
return wrap(dispatch_randint(r.toInt64(0), r.intlist(1), r.tensor(2)).set_requires_grad(r.toBool(6))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(4)) { | |
auto low = r.toInt64(0); | |
auto high = r.toInt64(1); | |
auto size = r.intlist(2); | |
auto generator = r.generator(3); | |
// NOTE: r.scalartype(X) gives the default dtype if r.isNone(X) | |
auto dtype = r.scalartypeWithDefault(5, at::ScalarType::Long); | |
auto device = r.device(7); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(6).layout) | |
.requires_grad(r.toBool(8)); | |
return wrap(dispatch_randint(low, high, size, generator, options)); | |
} else { | |
check_out_type_matches(r.tensor(4), r.scalartype(5), r.isNone(5), | |
r.layout(6), r.isNone(6), | |
r.device(7), r.isNone(7)); | |
return wrap(dispatch_randint(r.toInt64(0), r.toInt64(1), r.intlist(2), r.generator(3), r.tensor(4)).set_requires_grad(r.toBool(8))); | |
} | |
} else if (r.idx == 3) { | |
if (r.isNone(3)) { | |
auto low = r.toInt64(0); | |
auto high = r.toInt64(1); | |
auto size = r.intlist(2); | |
// NOTE: r.scalartype(X) gives the default dtype if r.isNone(X) | |
auto dtype = r.scalartypeWithDefault(4, at::ScalarType::Long); | |
auto device = r.device(6); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(5).layout) | |
.requires_grad(r.toBool(7)); | |
return wrap(dispatch_randint(low, high, size, options)); | |
} else { | |
check_out_type_matches(r.tensor(3), r.scalartype(4), r.isNone(4), | |
r.layout(5), r.isNone(5), | |
r.device(6), r.isNone(6)); | |
return wrap(dispatch_randint(r.toInt64(0), r.toInt64(1), r.intlist(2), r.tensor(3)).set_requires_grad(r.toBool(7))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_as_tensor(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
jit::tracer::warn("torch.as_tensor", jit::tracer::WARN_CONSTRUCTOR); | |
return THPVariable_Wrap(torch::utils::as_tensor(default_type(), default_scalar_type(), args, kwargs)); | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_from_numpy(PyObject* module, PyObject* arg) | |
{ | |
HANDLE_TH_ERRORS | |
jit::tracer::warn("torch.from_numpy", jit::tracer::WARN_CONSTRUCTOR); | |
auto data = torch::utils::tensor_from_numpy(arg); | |
return THPVariable_Wrap(make_variable(std::move(data), /*requires_grad=*/false)); | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__promote_types(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_promote_types(ScalarType type1, ScalarType type2)", | |
}); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
ScalarType promoted = at::promoteTypes(r.scalartype(0), r.scalartype(1)); | |
return torch::autograd::utils::wrap(torch::getDtype(promoted)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sparse_coo_tensor(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
jit::tracer::warn("torch.sparse_coo_tensor", jit::tracer::WARN_CONSTRUCTOR); | |
return THPVariable_Wrap(torch::utils::sparse_coo_tensor_ctor(default_type(), default_scalar_type(), args, kwargs)); | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tensor(PyObject* self, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
jit::tracer::warn("torch.tensor", jit::tracer::WARN_CONSTRUCTOR); | |
return THPVariable_Wrap(torch::utils::tensor_ctor(default_type(), default_scalar_type(), args, kwargs)); | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_get_device(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"get_device(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(r.tensor(0).get_device()); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
// generated methods start here | |
static PyObject * THPVariable___and__(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__and__(Tensor input, Tensor other)", | |
"__and__(Tensor input, Scalar other)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___and__(r.tensor(0), r.tensor(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___and__(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___lshift__(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__lshift__(Tensor input, Tensor other)", | |
"__lshift__(Tensor input, Scalar other)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___lshift__(r.tensor(0), r.tensor(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___lshift__(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___or__(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__or__(Tensor input, Tensor other)", | |
"__or__(Tensor input, Scalar other)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___or__(r.tensor(0), r.tensor(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___or__(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___rshift__(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__rshift__(Tensor input, Tensor other)", | |
"__rshift__(Tensor input, Scalar other)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___rshift__(r.tensor(0), r.tensor(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___rshift__(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable___xor__(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"__xor__(Tensor input, Tensor other)", | |
"__xor__(Tensor input, Scalar other)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch___xor__(r.tensor(0), r.tensor(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch___xor__(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__adaptive_avg_pool2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_adaptive_avg_pool2d(Tensor input, IntArrayRef[2] output_size)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__adaptive_avg_pool2d(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__addmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_addmm(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch__addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch__addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__addmm_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_addmm_(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__addmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__addr(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_addr(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch__addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch__addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__addr_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_addr_(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__addr_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__baddbmm_mkl_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_baddbmm_mkl_(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__baddbmm_mkl_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__batch_norm_impl_index(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double momentum, double eps, bool cudnn_enabled)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__batch_norm_impl_index(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Byte(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Byte(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Byte(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Char(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Char(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Char(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Double(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Double(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Double(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Float(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Float(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Float(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Half(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Half(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Half(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Int(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Int(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Int(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Long(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Long(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Long(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cast_Short(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cast_Short(Tensor input, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cast_Short(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cat(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cat(TensorList tensors, int64_t dim=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch__cat(r.tensorlist(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch__cat(r.tensorlist(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups, bool benchmark, bool deterministic, bool cudnn_enabled)", | |
}, /*traceable=*/true); | |
ParsedArgs<12> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7), r.toInt64(8), r.toBool(9), r.toBool(10), r.toBool(11))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__convolution_nogroup(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_convolution_nogroup(Tensor input, Tensor weight, Tensor? bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__convolution_nogroup(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__copy_from(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_copy_from(Tensor input, Tensor dst, bool non_blocking=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__copy_from(r.tensor(0), r.tensor(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__ctc_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_ctc_loss(Tensor log_probs, Tensor targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank=0, bool zero_infinity=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__ctc_loss(r.tensor(0), r.tensor(1), r.intlist(2), r.intlist(3), r.toInt64(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cudnn_ctc_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cudnn_ctc_loss(Tensor log_probs, Tensor targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, bool deterministic, bool zero_infinity)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cudnn_ctc_loss(r.tensor(0), r.tensor(1), r.intlist(2), r.intlist(3), r.toInt64(4), r.toBool(5), r.toBool(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cudnn_init_dropout_state(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto dropout = r.toDouble(0); | |
auto train = r.toBool(1); | |
auto dropout_seed = r.toInt64(2); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch__cudnn_init_dropout_state(dropout, train, dropout_seed, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cudnn_rnn(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cudnn_rnn(Tensor input, TensorList weight, int64_t weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, Tensor? dropout_state)", | |
}, /*traceable=*/true); | |
ParsedArgs<15> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cudnn_rnn(r.tensor(0), r.tensorlist(1), r.toInt64(2), r.tensor(3), r.tensor(4), r.tensor(5), r.toInt64(6), r.toInt64(7), r.toInt64(8), r.toBool(9), r.toDouble(10), r.toBool(11), r.toBool(12), r.intlist(13), r.tensor(14))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cudnn_rnn_flatten_weight(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cudnn_rnn_flatten_weight(TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, bool bidirectional)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cudnn_rnn_flatten_weight(r.tensorlist(0), r.toInt64(1), r.toInt64(2), r.toInt64(3), r.toInt64(4), r.toInt64(5), r.toBool(6), r.toBool(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cufft_clear_plan_cache(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cufft_clear_plan_cache(int64_t device_index)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
dispatch__cufft_clear_plan_cache(r.toInt64(0)); | |
Py_RETURN_NONE; | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cufft_get_plan_cache_max_size(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cufft_get_plan_cache_max_size(int64_t device_index)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cufft_get_plan_cache_max_size(r.toInt64(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cufft_get_plan_cache_size(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cufft_get_plan_cache_size(int64_t device_index)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__cufft_get_plan_cache_size(r.toInt64(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__cufft_set_plan_cache_max_size(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_cufft_set_plan_cache_max_size(int64_t device_index, int64_t max_size)", | |
}, /*traceable=*/false); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
dispatch__cufft_set_plan_cache_max_size(r.toInt64(0), r.toInt64(1)); | |
Py_RETURN_NONE; | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__debug_has_internal_overlap(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_debug_has_internal_overlap(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__debug_has_internal_overlap(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__dequantize_linear(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_dequantize_linear(Tensor input, double scale, int64_t zero_point, ScalarType dtype)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__dequantize_linear(r.tensor(0), r.toDouble(1), r.toInt64(2), r.scalartype(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__dim_arange(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_dim_arange(Tensor like, int64_t dim)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__dim_arange(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__dirichlet_grad(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_dirichlet_grad(Tensor x, Tensor alpha, Tensor total, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch__dirichlet_grad(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch__dirichlet_grad(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__embedding_bag(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int64_t mode=0, bool sparse=False, Tensor? per_sample_weights=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__embedding_bag(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toInt64(4), r.toBool(5), r.tensor(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__empty_affine_quantized(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_empty_affine_quantized(IntArrayRef size, *, double scale=1, int64_t zero_point=0, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto size = r.intlist(0); | |
auto scale = r.toDouble(1); | |
auto zero_point = r.toInt64(2); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch__empty_affine_quantized(size, scale, zero_point, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__fft_with_size(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_fft_with_size(Tensor input, int64_t signal_ndim, bool complex_input, bool complex_output, bool inverse, IntArrayRef checked_signal_sizes, bool normalized, bool onesided, IntArrayRef output_sizes)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__fft_with_size(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.toBool(4), r.intlist(5), r.toBool(6), r.toBool(7), r.intlist(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__fused_dropout(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_fused_dropout(Tensor input, double p, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__fused_dropout(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__index_copy_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_index_copy_(Tensor input, int64_t dim, Tensor index, Tensor source)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__index_copy_(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__log_softmax(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_log_softmax(Tensor input, int64_t dim, bool half_to_float)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__log_softmax(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__log_softmax_backward_data(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_log_softmax_backward_data(Tensor grad_output, Tensor output, int64_t dim, Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__log_softmax_backward_data(r.tensor(0), r.tensor(1), r.toInt64(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__lu_with_info(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_lu_with_info(Tensor input, bool pivot=True, bool check_errors=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__lu_with_info(r.tensor(0), r.toBool(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__masked_scale(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_masked_scale(Tensor input, Tensor mask, double scale)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__masked_scale(r.tensor(0), r.tensor(1), r.toDouble(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__max(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_max(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch__max(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch__max(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__min(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_min(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch__min(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch__min(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__mode(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_mode(Tensor input, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch__mode(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(dispatch__mode(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__multinomial_alias_draw(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_multinomial_alias_draw(Tensor J, Tensor q, int64_t num_samples, *, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__multinomial_alias_draw(r.tensor(0), r.tensor(1), r.toInt64(2), r.generator(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__multinomial_alias_setup(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_multinomial_alias_setup(Tensor probs)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__multinomial_alias_setup(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__nnpack_available(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_nnpack_available()", | |
}, /*traceable=*/false); | |
ParsedArgs<0> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__nnpack_available()); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__nnpack_spatial_convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef[2] padding)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__nnpack_spatial_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__pack_padded_sequence(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__pack_padded_sequence(r.tensor(0), r.tensor(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__pad_packed_sequence(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int64_t total_length)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__pad_packed_sequence(r.tensor(0), r.tensor(1), r.toBool(2), r.scalar(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__per_tensor_affine_qtensor(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_per_tensor_affine_qtensor(Tensor input, double scale, int64_t zero_point)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__per_tensor_affine_qtensor(r.tensor(0), r.toDouble(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__reshape_from_tensor(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_reshape_from_tensor(Tensor input, Tensor shape)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__reshape_from_tensor(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__s_where(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_s_where(Tensor condition, Tensor input, Tensor other)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__s_where(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sample_dirichlet(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sample_dirichlet(Tensor input, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sample_dirichlet(r.tensor(0), r.generator(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__shape_as_tensor(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_shape_as_tensor(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__shape_as_tensor(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sobol_engine_draw(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sobol_engine_draw(Tensor quasi, int64_t n, Tensor sobolstate, int64_t dimension, int64_t num_generated, ScalarType? dtype)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sobol_engine_draw(r.tensor(0), r.toInt64(1), r.tensor(2), r.toInt64(3), r.toInt64(4), r.scalartypeOptional(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sobol_engine_ff_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sobol_engine_ff_(Tensor input, int64_t n, Tensor sobolstate, int64_t dimension, int64_t num_generated)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sobol_engine_ff_(r.tensor(0), r.toInt64(1), r.tensor(2), r.toInt64(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sobol_engine_initialize_state_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sobol_engine_initialize_state_(Tensor input, int64_t dimension)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sobol_engine_initialize_state_(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sobol_engine_scramble_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sobol_engine_scramble_(Tensor input, Tensor ltm, int64_t dimension)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sobol_engine_scramble_(r.tensor(0), r.tensor(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__softmax(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_softmax(Tensor input, int64_t dim, bool half_to_float)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__softmax(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__softmax_backward_data(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_softmax_backward_data(Tensor grad_output, Tensor output, int64_t dim, Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__softmax_backward_data(r.tensor(0), r.tensor(1), r.toInt64(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sparse_addmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sparse_addmm(Tensor input, Tensor sparse, Tensor dense, *, Scalar beta=1, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sparse_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sparse_mm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sparse_mm(Tensor sparse, Tensor dense)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sparse_mm(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__sparse_sum(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_sparse_sum(Tensor input)", | |
"_sparse_sum(Tensor input, *, ScalarType dtype)", | |
"_sparse_sum(Tensor input, IntArrayRef[1] dim)", | |
"_sparse_sum(Tensor input, IntArrayRef[1] dim, *, ScalarType dtype)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__sparse_sum(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch__sparse_sum(r.tensor(0), r.scalartype(1))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch__sparse_sum(r.tensor(0), r.intlist(1))); | |
} else if (r.idx == 3) { | |
return wrap(dispatch__sparse_sum(r.tensor(0), r.intlist(1), r.scalartype(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__standard_gamma(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_standard_gamma(Tensor input, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__standard_gamma(r.tensor(0), r.generator(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__standard_gamma_grad(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_standard_gamma_grad(Tensor input, Tensor output)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__standard_gamma_grad(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__std(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_std(Tensor input, bool unbiased=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__std(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__trilinear(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_trilinear(Tensor i1, Tensor i2, Tensor i3, IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, IntArrayRef sumdim, int64_t unroll_dim=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__trilinear(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.intlist(6), r.toInt64(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__unique(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_unique(Tensor input, bool sorted=True, bool return_inverse=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__unique(r.tensor(0), r.toBool(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__unique2(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_unique2(Tensor input, bool sorted=True, bool return_inverse=False, bool return_counts=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__unique2(r.tensor(0), r.toBool(1), r.toBool(2), r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__var(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_var(Tensor input, bool unbiased=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__var(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__weight_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_weight_norm(Tensor v, Tensor g, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__weight_norm(r.tensor(0), r.tensor(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable__weight_norm_cuda_interface(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"_weight_norm_cuda_interface(Tensor v, Tensor g, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch__weight_norm_cuda_interface(r.tensor(0), r.tensor(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_abs(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"abs(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_abs(r.tensor(0))); | |
} else { | |
return wrap(dispatch_abs(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_abs_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"abs_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_abs_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_acos(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"acos(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_acos(r.tensor(0))); | |
} else { | |
return wrap(dispatch_acos(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_acos_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"acos_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_acos_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_adaptive_avg_pool1d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"adaptive_avg_pool1d(Tensor input, IntArrayRef[1] output_size)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_adaptive_avg_pool1d(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_adaptive_max_pool1d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"adaptive_max_pool1d(Tensor input, IntArrayRef[1] output_size)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_adaptive_max_pool1d(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_add(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"add(Tensor input, Scalar alpha, Tensor other, *, Tensor out=None)|deprecated", | |
"add(Tensor input, Tensor other, *, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_add(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_add(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_add(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addbmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addbmm(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor out=None)|deprecated", | |
"addbmm(Scalar beta, Tensor input, Tensor batch1, Tensor batch2, *, Tensor out=None)|deprecated", | |
"addbmm(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else { | |
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_addbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addcdiv(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addcdiv(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2, *, Tensor out=None)|deprecated", | |
"addcdiv(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_addcdiv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addcmul(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addcmul(Tensor input, Scalar value, Tensor tensor1, Tensor tensor2, *, Tensor out=None)|deprecated", | |
"addcmul(Tensor input, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addcmul(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_addcmul(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addcmul(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_addcmul(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmm(Scalar beta, Tensor input, Scalar alpha, Tensor mat1, Tensor mat2, *, Tensor out=None)|deprecated", | |
"addmm(Scalar beta, Tensor input, Tensor mat1, Tensor mat2, *, Tensor out=None)|deprecated", | |
"addmm(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else { | |
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_addmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmv(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmv(Scalar beta, Tensor input, Scalar alpha, Tensor mat, Tensor vec, *, Tensor out=None)|deprecated", | |
"addmv(Scalar beta, Tensor input, Tensor mat, Tensor vec, *, Tensor out=None)|deprecated", | |
"addmv(Tensor input, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else { | |
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_addmv(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addmv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addmv(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addmv_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addmv_(Scalar beta, Tensor input, Scalar alpha, Tensor mat, Tensor vec)|deprecated", | |
"addmv_(Scalar beta, Tensor input, Tensor mat, Tensor vec)|deprecated", | |
"addmv_(Tensor input, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_addmv_(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_addmv_(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_addmv_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_addr(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"addr(Scalar beta, Tensor input, Scalar alpha, Tensor vec1, Tensor vec2, *, Tensor out=None)|deprecated", | |
"addr(Scalar beta, Tensor input, Tensor vec1, Tensor vec2, *, Tensor out=None)|deprecated", | |
"addr(Tensor input, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else { | |
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_addr(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_addr(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_affine_grid_generator(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"affine_grid_generator(Tensor theta, IntArrayRef size)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_affine_grid_generator(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_all(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"all(Tensor input)", | |
"all(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_all(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_all(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_all(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_allclose(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"allclose(Tensor input, Tensor other, double rtol=1e-05, double atol=1e-08, bool equal_nan=False)", | |
}, /*traceable=*/false); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_allclose(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3), r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_alpha_dropout(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"alpha_dropout(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_alpha_dropout(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_alpha_dropout_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"alpha_dropout_(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_alpha_dropout_(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_any(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"any(Tensor input)", | |
"any(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_any(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_any(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_any(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_argmax(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"argmax(Tensor input, int64_t? dim=c10::nullopt, bool keepdim=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_argmax(r.tensor(0), r.toInt64Optional(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_argmin(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"argmin(Tensor input, int64_t? dim=c10::nullopt, bool keepdim=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_argmin(r.tensor(0), r.toInt64Optional(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_argsort(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"argsort(Tensor input, int64_t dim=-1, bool descending=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_argsort(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_as_strided(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"as_strided(Tensor input, IntArrayRef size, IntArrayRef stride, int64_t? storage_offset=c10::nullopt)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_as_strided(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64Optional(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_as_strided_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"as_strided_(Tensor input, IntArrayRef size, IntArrayRef stride, int64_t? storage_offset=c10::nullopt)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_as_strided_(r.tensor(0), r.intlist(1), r.intlist(2), r.toInt64Optional(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_asin(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"asin(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_asin(r.tensor(0))); | |
} else { | |
return wrap(dispatch_asin(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_asin_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"asin_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_asin_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_atan(r.tensor(0))); | |
} else { | |
return wrap(dispatch_atan(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan2(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan2(Tensor input, Tensor other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_atan2(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_atan2(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_atan_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"atan_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_atan_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_avg_pool1d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"avg_pool1d(Tensor input, IntArrayRef[1] kernel_size, IntArrayRef[1] stride=None, IntArrayRef[1] padding=0, bool ceil_mode=False, bool count_include_pad=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_avg_pool1d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.toBool(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_baddbmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"baddbmm(Scalar beta, Tensor input, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor out=None)|deprecated", | |
"baddbmm(Scalar beta, Tensor input, Tensor batch1, Tensor batch2, *, Tensor out=None)|deprecated", | |
"baddbmm(Tensor input, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else { | |
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else { | |
return wrap(dispatch_baddbmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_baddbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_baddbmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bartlett_window(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bartlett_window(int64_t window_length, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"bartlett_window(int64_t window_length, bool periodic, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto window_length = r.toInt64(0); | |
auto dtype = r.scalartype(1); | |
auto device = r.device(3); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(2).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_bartlett_window(window_length, options)); | |
} else if (r.idx == 1) { | |
auto window_length = r.toInt64(0); | |
auto periodic = r.toBool(1); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_bartlett_window(window_length, periodic, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double momentum, double eps, bool cudnn_enabled)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm_backward_elemt(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor mean_dy, Tensor mean_dy_xmu)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm_backward_elemt(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5), r.tensor(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm_backward_reduce(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, bool input_g, bool weight_g, bool bias_g)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm_backward_reduce(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.toBool(4), r.toBool(5), r.toBool(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm_elemt(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, double eps)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm_elemt(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toDouble(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm_gather_stats(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, double momentum, double eps, int64_t count)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm_gather_stats(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toDouble(5), r.toDouble(6), r.toInt64(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm_stats(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm_stats(Tensor input, double eps)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm_stats(r.tensor(0), r.toDouble(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_batch_norm_update_stats(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, double momentum)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_batch_norm_update_stats(r.tensor(0), r.tensor(1), r.tensor(2), r.toDouble(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bernoulli(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bernoulli(Tensor input, *, Generator generator=None, Tensor out=None)", | |
"bernoulli(Tensor input, double p, *, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_bernoulli(r.tensor(0), r.generator(1))); | |
} else { | |
return wrap(dispatch_bernoulli(r.tensor(0), r.generator(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
return wrap(dispatch_bernoulli(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bilinear(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_bilinear(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_binary_cross_entropy_with_logits(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"binary_cross_entropy_with_logits(Tensor input, Tensor target, Tensor? weight, Tensor? pos_weight, int64_t reduction)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_binary_cross_entropy_with_logits(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bincount(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bincount(Tensor input, Tensor? weights=None, int64_t minlength=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_bincount(r.tensor(0), r.tensor(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_blackman_window(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"blackman_window(int64_t window_length, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"blackman_window(int64_t window_length, bool periodic, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto window_length = r.toInt64(0); | |
auto dtype = r.scalartype(1); | |
auto device = r.device(3); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(2).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_blackman_window(window_length, options)); | |
} else if (r.idx == 1) { | |
auto window_length = r.toInt64(0); | |
auto periodic = r.toBool(1); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_blackman_window(window_length, periodic, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_bmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"bmm(Tensor input, Tensor mat2, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_bmm(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_bmm(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_broadcast_tensors(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"broadcast_tensors(TensorList tensors)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_broadcast_tensors(r.tensorlist(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cartesian_prod(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cartesian_prod(TensorList tensors)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cartesian_prod(r.tensorlist(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cat(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cat(TensorList tensors, int64_t dim=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cat(r.tensorlist(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_cat(r.tensorlist(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cdist(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cdist(Tensor x1, Tensor x2, double p=2)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cdist(r.tensor(0), r.tensor(1), r.toDouble(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ceil(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ceil(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_ceil(r.tensor(0))); | |
} else { | |
return wrap(dispatch_ceil(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ceil_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ceil_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_ceil_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_celu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"celu(Tensor input, Scalar alpha=1.0)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_celu(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_celu_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"celu_(Tensor input, Scalar alpha=1.0)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_celu_(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_chain_matmul(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"chain_matmul(TensorList matrices)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_chain_matmul(r.tensorlist(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cholesky(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cholesky(Tensor input, bool upper=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cholesky(r.tensor(0), r.toBool(1))); | |
} else { | |
return wrap(dispatch_cholesky(r.tensor(0), r.toBool(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cholesky_inverse(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cholesky_inverse(Tensor input, bool upper=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cholesky_inverse(r.tensor(0), r.toBool(1))); | |
} else { | |
return wrap(dispatch_cholesky_inverse(r.tensor(0), r.toBool(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cholesky_solve(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cholesky_solve(Tensor input, Tensor input2, bool upper=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_cholesky_solve(r.tensor(0), r.tensor(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_cholesky_solve(r.tensor(0), r.tensor(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_chunk(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"chunk(Tensor input, int64_t chunks, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_chunk(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clamp(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp(Tensor input, Scalar? min=c10::nullopt, Scalar? max=c10::nullopt, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_clamp(r.tensor(0), r.scalarOptional(1), r.scalarOptional(2))); | |
} else { | |
return wrap(dispatch_clamp(r.tensor(0), r.scalarOptional(1), r.scalarOptional(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clamp_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp_(Tensor input, Scalar? min=c10::nullopt, Scalar? max=c10::nullopt)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_clamp_(r.tensor(0), r.scalarOptional(1), r.scalarOptional(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clamp_max(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp_max(Tensor input, Scalar max, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_clamp_max(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_clamp_max(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clamp_max_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp_max_(Tensor input, Scalar max)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_clamp_max_(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clamp_min(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp_min(Tensor input, Scalar min, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_clamp_min(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_clamp_min(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clamp_min_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clamp_min_(Tensor input, Scalar min)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_clamp_min_(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_clone(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"clone(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_clone(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_combinations(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"combinations(Tensor input, int64_t r=2, bool with_replacement=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_combinations(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_constant_pad_nd(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"constant_pad_nd(Tensor input, IntArrayRef pad, Scalar value=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_constant_pad_nd(r.tensor(0), r.intlist(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv1d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv1d(Tensor input, Tensor weight, Tensor? bias=None, IntArrayRef[1] stride=1, IntArrayRef[1] padding=0, IntArrayRef[1] dilation=1, int64_t groups=1)", | |
}, /*traceable=*/false); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv1d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv2d(Tensor input, Tensor weight, Tensor? bias=None, IntArrayRef[2] stride=1, IntArrayRef[2] padding=0, IntArrayRef[2] dilation=1, int64_t groups=1)", | |
}, /*traceable=*/false); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv2d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv3d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv3d(Tensor input, Tensor weight, Tensor? bias=None, IntArrayRef[3] stride=1, IntArrayRef[3] padding=0, IntArrayRef[3] dilation=1, int64_t groups=1)", | |
}, /*traceable=*/false); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv3d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_tbc(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_tbc(Tensor input, Tensor weight, Tensor bias, int64_t pad=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_tbc(r.tensor(0), r.tensor(1), r.tensor(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_transpose1d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, IntArrayRef[1] stride=1, IntArrayRef[1] padding=0, IntArrayRef[1] output_padding=0, int64_t groups=1, IntArrayRef[1] dilation=1)", | |
}, /*traceable=*/false); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_transpose1d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_transpose2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_transpose2d(Tensor input, Tensor weight, Tensor? bias=None, IntArrayRef[2] stride=1, IntArrayRef[2] padding=0, IntArrayRef[2] output_padding=0, int64_t groups=1, IntArrayRef[2] dilation=1)", | |
}, /*traceable=*/false); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_transpose2d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_conv_transpose3d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"conv_transpose3d(Tensor input, Tensor weight, Tensor? bias=None, IntArrayRef[3] stride=1, IntArrayRef[3] padding=0, IntArrayRef[3] output_padding=0, int64_t groups=1, IntArrayRef[3] dilation=1)", | |
}, /*traceable=*/false); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_conv_transpose3d(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.intlist(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups)", | |
}, /*traceable=*/false); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toBool(6), r.intlist(7), r.toInt64(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cos(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cos(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_cos(r.tensor(0))); | |
} else { | |
return wrap(dispatch_cos(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cos_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cos_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cos_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cosh(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cosh(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_cosh(r.tensor(0))); | |
} else { | |
return wrap(dispatch_cosh(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cosh_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cosh_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cosh_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cosine_embedding_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, double margin=0.0, int64_t reduction=Reduction::Mean)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cosine_embedding_loss(r.tensor(0), r.tensor(1), r.tensor(2), r.toDouble(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cosine_similarity(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cosine_similarity(Tensor x1, Tensor x2, int64_t dim=1, double eps=1e-08)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cosine_similarity(r.tensor(0), r.tensor(1), r.toInt64(2), r.toDouble(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cross(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cross(Tensor input, Tensor other, int64_t? dim=c10::nullopt, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_cross(r.tensor(0), r.tensor(1), r.toInt64Optional(2))); | |
} else { | |
return wrap(dispatch_cross(r.tensor(0), r.tensor(1), r.toInt64Optional(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ctc_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ctc_loss(Tensor log_probs, Tensor targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank=0, int64_t reduction=Reduction::Mean, bool zero_infinity=False)", | |
"ctc_loss(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int64_t blank=0, int64_t reduction=Reduction::Mean, bool zero_infinity=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_ctc_loss(r.tensor(0), r.tensor(1), r.intlist(2), r.intlist(3), r.toInt64(4), r.toInt64(5), r.toBool(6))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_ctc_loss(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.toInt64(4), r.toInt64(5), r.toBool(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_affine_grid_generator(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_affine_grid_generator(Tensor theta, int64_t N, int64_t C, int64_t H, int64_t W)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_affine_grid_generator(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_batch_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double exponential_average_factor, double epsilon)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_convolution_transpose(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_convolution_transpose(Tensor input, Tensor weight, Tensor? bias, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}, /*traceable=*/true); | |
ParsedArgs<10> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_convolution_transpose(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.intlist(6), r.toInt64(7), r.toBool(8), r.toBool(9))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_grid_sampler(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_grid_sampler(Tensor input, Tensor grid)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_grid_sampler(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cudnn_is_acceptable(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cudnn_is_acceptable(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_cudnn_is_acceptable(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cumprod(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cumprod(Tensor input, int64_t dim, *, Tensor out=None)", | |
"cumprod(Tensor input, int64_t dim, *, ScalarType dtype, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1), r.scalartype(2))); | |
} else { | |
return wrap(dispatch_cumprod(r.tensor(0), r.toInt64(1), r.scalartype(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_cumsum(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"cumsum(Tensor input, int64_t dim, *, Tensor out=None)", | |
"cumsum(Tensor input, int64_t dim, *, ScalarType dtype, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1), r.scalartype(2))); | |
} else { | |
return wrap(dispatch_cumsum(r.tensor(0), r.toInt64(1), r.scalartype(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dequantize(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dequantize(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_dequantize(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_det(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"det(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_det(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_detach(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"detach(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_detach(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_detach_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"detach_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_detach_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_diag(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"diag(Tensor input, int64_t diagonal=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_diag(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_diag(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_diag_embed(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"diag_embed(Tensor input, int64_t offset=0, int64_t dim1=-2, int64_t dim2=-1)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_diag_embed(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_diagflat(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"diagflat(Tensor input, int64_t offset=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_diagflat(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_diagonal(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"diagonal(Tensor input, int64_t offset=0, int64_t dim1=0, int64_t dim2=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_diagonal(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_digamma(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"digamma(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_digamma(r.tensor(0))); | |
} else { | |
return wrap(dispatch_digamma(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dist(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dist(Tensor input, Tensor other, Scalar p=2)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_dist(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_div(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"div(Tensor input, Tensor other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_div(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_div(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dot(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dot(Tensor input, Tensor tensor, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_dot(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_dot(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dropout(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dropout(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_dropout(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_dropout_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"dropout_(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_dropout_(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eig(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eig(Tensor input, bool eigenvectors=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.eig_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.eig", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(&type1, dispatch_eig(r.tensor(0), r.toBool(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(&type0, dispatch_eig(r.tensor(0), r.toBool(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_einsum(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"einsum(std::string equation, TensorList tensors)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_einsum(r.string(0), r.tensorlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_embedding(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"embedding(Tensor weight, Tensor indices, int64_t padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_embedding(r.tensor(0), r.tensor(1), r.toInt64(2), r.toBool(3), r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_embedding_bag(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int64_t mode=0, bool sparse=False, Tensor? per_sample_weights=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_embedding_bag(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toInt64(4), r.toBool(5), r.tensor(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_embedding_renorm_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"embedding_renorm_(Tensor input, Tensor indices, double max_norm, double norm_type)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_embedding_renorm_(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_empty(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"empty(IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
auto size = r.intlist(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_empty(size, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_empty(r.intlist(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_empty_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"empty_like(Tensor input, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"empty_like(Tensor input, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto dtype = r.scalartypeWithDefault(1, self.scalar_type()); | |
auto device = r.deviceWithDefault(3, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(2, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_empty_like(self, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_empty_like(r.tensor(0)).set_requires_grad(r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_empty_strided(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"empty_strided(IntArrayRef size, IntArrayRef stride, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto size = r.intlist(0); | |
auto stride = r.intlist(1); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_empty_strided(size, stride, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eq(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eq(Tensor input, Tensor other, *, Tensor out=None)", | |
"eq(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_eq(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_eq(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_eq(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_eq(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_equal(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"equal(Tensor input, Tensor other)", | |
}, /*traceable=*/false); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_equal(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erf(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erf(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_erf(r.tensor(0))); | |
} else { | |
return wrap(dispatch_erf(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erf_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erf_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_erf_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erfc(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erfc(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_erfc(r.tensor(0))); | |
} else { | |
return wrap(dispatch_erfc(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erfc_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erfc_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_erfc_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_erfinv(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"erfinv(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_erfinv(r.tensor(0))); | |
} else { | |
return wrap(dispatch_erfinv(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_exp(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"exp(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_exp(r.tensor(0))); | |
} else { | |
return wrap(dispatch_exp(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_exp_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"exp_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_exp_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_expm1(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"expm1(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_expm1(r.tensor(0))); | |
} else { | |
return wrap(dispatch_expm1(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_expm1_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"expm1_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_expm1_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_eye(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"eye(int64_t n, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"eye(int64_t n, int64_t m, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
auto n = r.toInt64(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_eye(n, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_eye(r.toInt64(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
auto n = r.toInt64(0); | |
auto m = r.toInt64(1); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_eye(n, m, options)); | |
} else { | |
check_out_type_matches(r.tensor(2), r.scalartype(3), r.isNone(3), | |
r.layout(4), r.isNone(4), | |
r.device(5), r.isNone(5)); | |
return wrap(dispatch_eye(r.toInt64(0), r.toInt64(1), r.tensor(2)).set_requires_grad(r.toBool(7))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fbgemm_is_cpu_supported(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fbgemm_is_cpu_supported()", | |
}, /*traceable=*/false); | |
ParsedArgs<0> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fbgemm_is_cpu_supported()); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fbgemm_linear_int8_weight(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fbgemm_linear_int8_weight(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.scalar(4), r.scalar(5), r.tensor(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fbgemm_linear_quantize_weight(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fbgemm_linear_quantize_weight(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fbgemm_linear_quantize_weight(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fbgemm_pack_quantized_matrix(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fbgemm_pack_quantized_matrix(Tensor input, int64_t K, int64_t N)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fbgemm_pack_quantized_matrix(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_feature_alpha_dropout(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"feature_alpha_dropout(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_feature_alpha_dropout(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_feature_alpha_dropout_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"feature_alpha_dropout_(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_feature_alpha_dropout_(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_feature_dropout(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"feature_dropout(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_feature_dropout(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_feature_dropout_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"feature_dropout_(Tensor input, double p, bool train)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_feature_dropout_(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fft(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fft(Tensor input, int64_t signal_ndim, bool normalized=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fft(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fill_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fill_(Tensor input, Tensor value)", | |
"fill_(Tensor input, Scalar value)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_fill_(r.tensor(0), r.tensor(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_fill_(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_flatten(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"flatten(Tensor input, int64_t start_dim=0, int64_t end_dim=-1)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_flatten(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_flip(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"flip(Tensor input, IntArrayRef dims)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_flip(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_floor(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"floor(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_floor(r.tensor(0))); | |
} else { | |
return wrap(dispatch_floor(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_floor_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"floor_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_floor_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_fmod(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"fmod(Tensor input, Tensor other, *, Tensor out=None)", | |
"fmod(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_fmod(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_fmod(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_fmod(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_fmod(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_frac(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"frac(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_frac(r.tensor(0))); | |
} else { | |
return wrap(dispatch_frac(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_frac_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"frac_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_frac_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_frobenius_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"frobenius_norm(Tensor input)", | |
"frobenius_norm(Tensor input, IntArrayRef[1] dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_frobenius_norm(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_frobenius_norm(r.tensor(0), r.intlist(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_frobenius_norm(r.tensor(0), r.intlist(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_from_file(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"from_file(std::string filename, bool? shared=c10::nullopt, int64_t? size=0, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto filename = r.string(0); | |
auto shared = r.toBoolOptional(1); | |
auto size = r.toInt64Optional(2); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_from_file(filename, shared, size, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_full(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"full(IntArrayRef size, Scalar fill_value, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
auto size = r.intlist(0); | |
auto fill_value = r.scalar(1); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_full(size, fill_value, options)); | |
} else { | |
check_out_type_matches(r.tensor(2), r.scalartype(3), r.isNone(3), | |
r.layout(4), r.isNone(4), | |
r.device(5), r.isNone(5)); | |
return wrap(dispatch_full(r.intlist(0), r.scalar(1), r.tensor(2)).set_requires_grad(r.toBool(7))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_full_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"full_like(Tensor input, Scalar fill_value, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"full_like(Tensor input, Scalar fill_value, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto fill_value = r.scalar(1); | |
auto dtype = r.scalartypeWithDefault(2, self.scalar_type()); | |
auto device = r.deviceWithDefault(4, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(3, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_full_like(self, fill_value, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_full_like(r.tensor(0), r.scalar(1)).set_requires_grad(r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gather(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gather(Tensor input, int64_t dim, Tensor index, *, bool sparse_grad=False, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_gather(r.tensor(0), r.toInt64(1), r.tensor(2), r.toBool(3))); | |
} else { | |
return wrap(dispatch_gather(r.tensor(0), r.toInt64(1), r.tensor(2), r.toBool(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ge(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ge(Tensor input, Tensor other, *, Tensor out=None)", | |
"ge(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ge(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_ge(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ge(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_ge(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gels(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gels(Tensor input, Tensor A, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"solution", ""}, {"QR", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.gels_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"solution", ""}, {"QR", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.gels", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(&type1, dispatch_gels(r.tensor(0), r.tensor(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(&type0, dispatch_gels(r.tensor(0), r.tensor(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_geqrf(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"geqrf(Tensor input, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"a", ""}, {"tau", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.geqrf_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"a", ""}, {"tau", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.geqrf", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(&type1, dispatch_geqrf(r.tensor(0))); | |
} else { | |
auto results = r.tensorlist_n<2>(1); | |
return wrap(&type0, dispatch_geqrf(r.tensor(0), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ger(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ger(Tensor input, Tensor vec2, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ger(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_ger(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_grid_sampler(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"grid_sampler(Tensor input, Tensor grid, int64_t interpolation_mode, int64_t padding_mode)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_grid_sampler(r.tensor(0), r.tensor(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_grid_sampler_2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"grid_sampler_2d(Tensor input, Tensor grid, int64_t interpolation_mode, int64_t padding_mode)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_grid_sampler_2d(r.tensor(0), r.tensor(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_grid_sampler_3d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"grid_sampler_3d(Tensor input, Tensor grid, int64_t interpolation_mode, int64_t padding_mode)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_grid_sampler_3d(r.tensor(0), r.tensor(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_group_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"group_norm(Tensor input, int64_t num_groups, Tensor? weight=None, Tensor? bias=None, double eps=1e-05, bool cudnn_enabled=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_group_norm(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3), r.toDouble(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gru(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gru(Tensor data, Tensor batch_sizes, Tensor hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional)", | |
"gru(Tensor input, Tensor hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_gru(r.tensor(0), r.tensor(1), r.tensor(2), r.tensorlist(3), r.toBool(4), r.toInt64(5), r.toDouble(6), r.toBool(7), r.toBool(8))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_gru(r.tensor(0), r.tensor(1), r.tensorlist(2), r.toBool(3), r.toInt64(4), r.toDouble(5), r.toBool(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gru_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None)", | |
}, /*traceable=*/false); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_gru_cell(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_gt(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"gt(Tensor input, Tensor other, *, Tensor out=None)", | |
"gt(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_gt(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_gt(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_gt(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_gt(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_hamming_window(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"hamming_window(int64_t window_length, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"hamming_window(int64_t window_length, bool periodic, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"hamming_window(int64_t window_length, bool periodic, double alpha, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"hamming_window(int64_t window_length, bool periodic, double alpha, double beta, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<10> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto window_length = r.toInt64(0); | |
auto dtype = r.scalartype(1); | |
auto device = r.device(3); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(2).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_hamming_window(window_length, options)); | |
} else if (r.idx == 1) { | |
auto window_length = r.toInt64(0); | |
auto periodic = r.toBool(1); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_hamming_window(window_length, periodic, options)); | |
} else if (r.idx == 2) { | |
auto window_length = r.toInt64(0); | |
auto periodic = r.toBool(1); | |
auto alpha = r.toDouble(2); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_hamming_window(window_length, periodic, alpha, options)); | |
} else if (r.idx == 3) { | |
auto window_length = r.toInt64(0); | |
auto periodic = r.toBool(1); | |
auto alpha = r.toDouble(2); | |
auto beta = r.toDouble(3); | |
auto dtype = r.scalartype(4); | |
auto device = r.device(6); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(5).layout) | |
.requires_grad(r.toBool(8)) | |
.pinned_memory(r.toBool(7)); | |
return wrap(dispatch_hamming_window(window_length, periodic, alpha, beta, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_hann_window(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"hann_window(int64_t window_length, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"hann_window(int64_t window_length, bool periodic, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto window_length = r.toInt64(0); | |
auto dtype = r.scalartype(1); | |
auto device = r.device(3); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(2).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_hann_window(window_length, options)); | |
} else if (r.idx == 1) { | |
auto window_length = r.toInt64(0); | |
auto periodic = r.toBool(1); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_hann_window(window_length, periodic, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_hardshrink(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"hardshrink(Tensor input, Scalar lambd=0.5)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_hardshrink(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_hinge_embedding_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"hinge_embedding_loss(Tensor input, Tensor target, double margin=1.0, int64_t reduction=Reduction::Mean)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_hinge_embedding_loss(r.tensor(0), r.tensor(1), r.toDouble(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_histc(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"histc(Tensor input, int64_t bins=100, Scalar min=0, Scalar max=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_histc(r.tensor(0), r.toInt64(1), r.scalar(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_histc(r.tensor(0), r.toInt64(1), r.scalar(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_hspmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"hspmm(Tensor mat1, Tensor mat2, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_hspmm(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_hspmm(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ifft(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ifft(Tensor input, int64_t signal_ndim, bool normalized=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_ifft(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_add(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_add(Tensor input, int64_t dim, Tensor index, Tensor source)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_add(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_copy(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_copy(Tensor input, int64_t dim, Tensor index, Tensor source)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_copy(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_fill(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_fill(Tensor input, int64_t dim, Tensor index, Tensor value)", | |
"index_fill(Tensor input, int64_t dim, Tensor index, Scalar value)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_fill(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_index_fill(r.tensor(0), r.toInt64(1), r.tensor(2), r.scalar(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_put(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_put(Tensor input, TensorList? indices, Tensor values, bool accumulate=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_put(r.tensor(0), r.tensorlist(1), r.tensor(2), r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_put_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_put_(Tensor input, TensorList? indices, Tensor values, bool accumulate=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_index_put_(r.tensor(0), r.tensorlist(1), r.tensor(2), r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_index_select(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"index_select(Tensor input, int64_t dim, Tensor index, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_index_select(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_index_select(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_instance_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_instance_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_int_repr(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"int_repr(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_int_repr(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_inverse(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"inverse(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_inverse(r.tensor(0))); | |
} else { | |
return wrap(dispatch_inverse(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_irfft(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"irfft(Tensor input, int64_t signal_ndim, bool normalized=False, bool onesided=True, IntArrayRef signal_sizes=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_irfft(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.intlist(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_complex(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_complex(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_complex(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_distributed(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_distributed(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_distributed(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_floating_point(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_floating_point(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_floating_point(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_nonzero(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_nonzero(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_nonzero(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_same_size(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_same_size(Tensor input, Tensor other)", | |
}, /*traceable=*/false); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_same_size(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_is_signed(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"is_signed(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_is_signed(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_isclose(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"isclose(Tensor input, Tensor other, double rtol=1e-05, double atol=1e-08, bool equal_nan=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_isclose(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3), r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_isnan(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"isnan(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_isnan(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_kl_div(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"kl_div(Tensor input, Tensor target, int64_t reduction=Reduction::Mean)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_kl_div(r.tensor(0), r.tensor(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_kthvalue(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"kthvalue(Tensor input, int64_t k, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.kthvalue", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.kthvalue_out", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(&type0, dispatch_kthvalue(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3))); | |
} else { | |
auto results = r.tensorlist_n<2>(4); | |
return wrap(&type1, dispatch_kthvalue(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_layer_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"layer_norm(Tensor input, IntArrayRef normalized_shape, Tensor? weight=None, Tensor? bias=None, double eps=1e-05, bool cudnn_enable=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_layer_norm(r.tensor(0), r.intlist(1), r.tensor(2), r.tensor(3), r.toDouble(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_le(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"le(Tensor input, Tensor other, *, Tensor out=None)", | |
"le(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_le(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_le(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_le(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_le(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lerp(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lerp(Tensor input, Tensor end, Tensor weight, *, Tensor out=None)", | |
"lerp(Tensor input, Tensor end, Scalar weight, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_lerp(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lgamma(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lgamma(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_lgamma(r.tensor(0))); | |
} else { | |
return wrap(dispatch_lgamma(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_linspace(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"linspace(Scalar start, Scalar end, int64_t steps=100, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
auto start = r.scalar(0); | |
auto end = r.scalar(1); | |
auto steps = r.toInt64(2); | |
auto dtype = r.scalartype(4); | |
auto device = r.device(6); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(5).layout) | |
.requires_grad(r.toBool(8)) | |
.pinned_memory(r.toBool(7)); | |
return wrap(dispatch_linspace(start, end, steps, options)); | |
} else { | |
check_out_type_matches(r.tensor(3), r.scalartype(4), r.isNone(4), | |
r.layout(5), r.isNone(5), | |
r.device(6), r.isNone(6)); | |
return wrap(dispatch_linspace(r.scalar(0), r.scalar(1), r.toInt64(2), r.tensor(3)).set_requires_grad(r.toBool(8))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_log(r.tensor(0))); | |
} else { | |
return wrap(dispatch_log(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log10(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log10(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_log10(r.tensor(0))); | |
} else { | |
return wrap(dispatch_log10(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log10_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log10_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log10_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log1p(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log1p(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_log1p(r.tensor(0))); | |
} else { | |
return wrap(dispatch_log1p(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log1p_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log1p_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log1p_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log2(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log2(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_log2(r.tensor(0))); | |
} else { | |
return wrap(dispatch_log2(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log2_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log2_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log2_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_log_softmax(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"log_softmax(Tensor input, int64_t dim)", | |
"log_softmax(Tensor input, int64_t dim, ScalarType dtype)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_log_softmax(r.tensor(0), r.toInt64(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_log_softmax(r.tensor(0), r.toInt64(1), r.scalartype(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_logdet(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"logdet(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_logdet(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_logspace(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"logspace(Scalar start, Scalar end, int64_t steps=100, double base=10.0, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<10> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
auto start = r.scalar(0); | |
auto end = r.scalar(1); | |
auto steps = r.toInt64(2); | |
auto base = r.toDouble(3); | |
auto dtype = r.scalartype(5); | |
auto device = r.device(7); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(6).layout) | |
.requires_grad(r.toBool(9)) | |
.pinned_memory(r.toBool(8)); | |
return wrap(dispatch_logspace(start, end, steps, base, options)); | |
} else { | |
check_out_type_matches(r.tensor(4), r.scalartype(5), r.isNone(5), | |
r.layout(6), r.isNone(6), | |
r.device(7), r.isNone(7)); | |
return wrap(dispatch_logspace(r.scalar(0), r.scalar(1), r.toInt64(2), r.toDouble(3), r.tensor(4)).set_requires_grad(r.toBool(9))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_logsumexp(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"logsumexp(Tensor input, IntArrayRef[1] dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_logsumexp(r.tensor(0), r.intlist(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_logsumexp(r.tensor(0), r.intlist(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lstm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lstm(Tensor data, Tensor batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional)", | |
"lstm(Tensor input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_lstm(r.tensor(0), r.tensor(1), r.tensorlist(2), r.tensorlist(3), r.toBool(4), r.toInt64(5), r.toDouble(6), r.toBool(7), r.toBool(8))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_lstm(r.tensor(0), r.tensorlist(1), r.tensorlist(2), r.toBool(3), r.toInt64(4), r.toDouble(5), r.toBool(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lstm_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lstm_cell(Tensor input, TensorList hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None)", | |
}, /*traceable=*/false); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_lstm_cell(r.tensor(0), r.tensorlist(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lt(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lt(Tensor input, Tensor other, *, Tensor out=None)", | |
"lt(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_lt(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_lt(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_lt(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_lt(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_lu_solve(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"lu_solve(Tensor input, Tensor LU_data, Tensor LU_pivots, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_lu_solve(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_lu_solve(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_margin_ranking_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, double margin=0.0, int64_t reduction=Reduction::Mean)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_margin_ranking_loss(r.tensor(0), r.tensor(1), r.tensor(2), r.toDouble(3), r.toInt64(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_masked_fill(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"masked_fill(Tensor input, Tensor mask, Tensor value)", | |
"masked_fill(Tensor input, Tensor mask, Scalar value)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_masked_fill(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_masked_fill(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_masked_scatter(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"masked_scatter(Tensor input, Tensor mask, Tensor source)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_masked_scatter(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_masked_select(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"masked_select(Tensor input, Tensor mask, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_masked_select(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_masked_select(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_matmul(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"matmul(Tensor input, Tensor other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_matmul(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_matmul(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_matrix_power(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"matrix_power(Tensor input, int64_t n)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_matrix_power(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_matrix_rank(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"matrix_rank(Tensor input, bool symmetric=False)", | |
"matrix_rank(Tensor input, double tol, bool symmetric=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_matrix_rank(r.tensor(0), r.toBool(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_matrix_rank(r.tensor(0), r.toDouble(1), r.toBool(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max(Tensor input)", | |
"max(Tensor input, Tensor other, *, Tensor out=None)", | |
"max(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.max", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.max_out", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
return wrap(dispatch_max(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_max(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_max(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(&type0, dispatch_max(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type1, dispatch_max(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max_pool1d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max_pool1d(Tensor input, IntArrayRef[1] kernel_size, IntArrayRef[1] stride=None, IntArrayRef[1] padding=0, IntArrayRef[1] dilation=1, bool ceil_mode=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_max_pool1d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max_pool1d_with_indices(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max_pool1d_with_indices(Tensor input, IntArrayRef[1] kernel_size, IntArrayRef[1] stride=None, IntArrayRef[1] padding=0, IntArrayRef[1] dilation=1, bool ceil_mode=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_max_pool1d_with_indices(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max_pool2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max_pool2d(Tensor input, IntArrayRef[2] kernel_size, IntArrayRef[2] stride=None, IntArrayRef[2] padding=0, IntArrayRef[2] dilation=1, bool ceil_mode=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_max_pool2d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_max_pool3d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"max_pool3d(Tensor input, IntArrayRef[3] kernel_size, IntArrayRef[3] stride=None, IntArrayRef[3] padding=0, IntArrayRef[3] dilation=1, bool ceil_mode=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_max_pool3d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mean(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mean(Tensor input)", | |
"mean(Tensor input, *, ScalarType dtype)", | |
"mean(Tensor input, IntArrayRef[1] dim, *, ScalarType dtype, Tensor out=None)", | |
"mean(Tensor input, IntArrayRef[1] dim, bool keepdim, *, ScalarType dtype, Tensor out=None)", | |
"mean(Tensor input, IntArrayRef[1] dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mean(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_mean(r.tensor(0), r.scalartype(1))); | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_mean(r.tensor(0), r.intlist(1), r.scalartype(2))); | |
} else { | |
return wrap(dispatch_mean(r.tensor(0), r.intlist(1), r.scalartype(2), r.tensor(3))); | |
} | |
} else if (r.idx == 3) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_mean(r.tensor(0), r.intlist(1), r.toBool(2), r.scalartype(3))); | |
} else { | |
return wrap(dispatch_mean(r.tensor(0), r.intlist(1), r.toBool(2), r.scalartype(3), r.tensor(4))); | |
} | |
} else if (r.idx == 4) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_mean(r.tensor(0), r.intlist(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_mean(r.tensor(0), r.intlist(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_median(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"median(Tensor input)", | |
"median(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.median", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.median_out", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
return wrap(dispatch_median(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(&type0, dispatch_median(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type1, dispatch_median(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_meshgrid(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"meshgrid(TensorList tensors)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_meshgrid(r.tensorlist(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_min(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"min(Tensor input)", | |
"min(Tensor input, Tensor other, *, Tensor out=None)", | |
"min(Tensor input, int64_t dim, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.min", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.min_out", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
return wrap(dispatch_min(r.tensor(0))); | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_min(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_min(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(&type0, dispatch_min(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type1, dispatch_min(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_miopen_batch_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double exponential_average_factor, double epsilon)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_miopen_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_miopen_convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"miopen_convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_miopen_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_miopen_convolution_transpose(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"miopen_convolution_transpose(Tensor input, Tensor weight, Tensor? bias, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}, /*traceable=*/true); | |
ParsedArgs<10> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_miopen_convolution_transpose(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.intlist(6), r.toInt64(7), r.toBool(8), r.toBool(9))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_miopen_depthwise_convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"miopen_depthwise_convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_miopen_depthwise_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mkldnn_adaptive_avg_pool2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mkldnn_adaptive_avg_pool2d(Tensor input, IntArrayRef[2] output_size)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mkldnn_adaptive_avg_pool2d(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mkldnn_convolution(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mkldnn_convolution(Tensor input, Tensor weight, Tensor? bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mkldnn_convolution(r.tensor(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mkldnn_convolution_backward_weights(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mkldnn_convolution_backward_weights(IntArrayRef weight_size, Tensor grad_output, Tensor input, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mkldnn_convolution_backward_weights(r.intlist(0), r.tensor(1), r.tensor(2), r.intlist(3), r.intlist(4), r.intlist(5), r.toInt64(6), r.toBool(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mkldnn_max_pool2d(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mkldnn_max_pool2d(Tensor input, IntArrayRef[2] kernel_size, IntArrayRef[2] stride=None, IntArrayRef[2] padding=0, IntArrayRef[2] dilation=1, bool ceil_mode=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mkldnn_max_pool2d(r.tensor(0), r.intlist(1), r.intlist(2), r.intlist(3), r.intlist(4), r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mkldnn_reshape(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mkldnn_reshape(Tensor input, IntArrayRef shape)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mkldnn_reshape(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mm(Tensor input, Tensor mat2, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mm(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_mm(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mode(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mode(Tensor input, int64_t dim=-1, bool keepdim=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.mode", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.mode_out", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(&type0, dispatch_mode(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type1, dispatch_mode(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mul(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mul(Tensor input, Tensor other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mul(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_mul(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_multinomial(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"multinomial(Tensor input, int64_t num_samples, bool replacement=False, *, Generator generator=None, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_multinomial(r.tensor(0), r.toInt64(1), r.toBool(2), r.generator(3))); | |
} else { | |
return wrap(dispatch_multinomial(r.tensor(0), r.toInt64(1), r.toBool(2), r.generator(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mv(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mv(Tensor input, Tensor vec, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_mv(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_mv(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_mvlgamma(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"mvlgamma(Tensor input, int64_t p)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_mvlgamma(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_narrow(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"narrow(Tensor input, int64_t dim, int64_t start, int64_t length)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_narrow(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toInt64(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_native_batch_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, double momentum, double eps)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_native_batch_norm(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.toBool(5), r.toDouble(6), r.toDouble(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_native_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"native_norm(Tensor input, Scalar p=2)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_native_norm(r.tensor(0), r.scalar(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ne(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ne(Tensor input, Tensor other, *, Tensor out=None)", | |
"ne(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ne(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_ne(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_ne(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_ne(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_neg(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"neg(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_neg(r.tensor(0))); | |
} else { | |
return wrap(dispatch_neg(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_neg_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"neg_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_neg_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_nonzero(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"nonzero(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_nonzero(r.tensor(0))); | |
} else { | |
return wrap(dispatch_nonzero(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"norm(Tensor input, Scalar p=2)", | |
"norm(Tensor input, Scalar? p, *, ScalarType dtype)", | |
"norm(Tensor input, Scalar? p, IntArrayRef[1] dim, bool keepdim, *, ScalarType dtype, Tensor out=None)", | |
"norm(Tensor input, Scalar? p, IntArrayRef[1] dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_norm(r.tensor(0), r.scalar(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_norm(r.tensor(0), r.scalarOptional(1), r.scalartype(2))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_norm(r.tensor(0), r.scalarOptional(1), r.intlist(2), r.toBool(3), r.scalartype(4))); | |
} else { | |
return wrap(dispatch_norm(r.tensor(0), r.scalarOptional(1), r.intlist(2), r.toBool(3), r.scalartype(4), r.tensor(5))); | |
} | |
} else if (r.idx == 3) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_norm(r.tensor(0), r.scalarOptional(1), r.intlist(2), r.toBool(3))); | |
} else { | |
return wrap(dispatch_norm(r.tensor(0), r.scalarOptional(1), r.intlist(2), r.toBool(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_norm_except_dim(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"norm_except_dim(Tensor v, int64_t pow=2, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_norm_except_dim(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_normal(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"normal(Tensor mean, Tensor std, *, Generator generator=None, Tensor out=None)", | |
"normal(Tensor mean, double std=1, *, Generator generator=None, Tensor out=None)", | |
"normal(double mean, Tensor std, *, Generator generator=None, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_normal(r.tensor(0), r.tensor(1), r.generator(2))); | |
} else { | |
return wrap(dispatch_normal(r.tensor(0), r.tensor(1), r.generator(2), r.tensor(3))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_normal(r.tensor(0), r.toDouble(1), r.generator(2))); | |
} else { | |
return wrap(dispatch_normal(r.tensor(0), r.toDouble(1), r.generator(2), r.tensor(3))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_normal(r.toDouble(0), r.tensor(1), r.generator(2))); | |
} else { | |
return wrap(dispatch_normal(r.toDouble(0), r.tensor(1), r.generator(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_nuclear_norm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"nuclear_norm(Tensor input, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_nuclear_norm(r.tensor(0), r.toBool(1))); | |
} else { | |
return wrap(dispatch_nuclear_norm(r.tensor(0), r.toBool(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_numel(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"numel(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_numel(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ones(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ones(IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
auto size = r.intlist(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_ones(size, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_ones(r.intlist(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ones_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ones_like(Tensor input, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"ones_like(Tensor input, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto dtype = r.scalartypeWithDefault(1, self.scalar_type()); | |
auto device = r.deviceWithDefault(3, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(2, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_ones_like(self, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_ones_like(r.tensor(0)).set_requires_grad(r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_orgqr(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"orgqr(Tensor input, Tensor input2, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_orgqr(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_orgqr(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_ormqr(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"ormqr(Tensor input, Tensor input2, Tensor input3, bool left=True, bool transpose=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_ormqr(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toBool(4))); | |
} else { | |
return wrap(dispatch_ormqr(r.tensor(0), r.tensor(1), r.tensor(2), r.toBool(3), r.toBool(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pairwise_distance(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pairwise_distance(Tensor x1, Tensor x2, double p=2, double eps=1e-06, bool keepdim=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pairwise_distance(r.tensor(0), r.tensor(1), r.toDouble(2), r.toDouble(3), r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pdist(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pdist(Tensor input, double p=2)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pdist(r.tensor(0), r.toDouble(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pin_memory(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pin_memory(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pin_memory(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pinverse(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pinverse(Tensor input, double rcond=1e-15)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pinverse(r.tensor(0), r.toDouble(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pixel_shuffle(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pixel_shuffle(Tensor input, int64_t upscale_factor)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_pixel_shuffle(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_poisson(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"poisson(Tensor input, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_poisson(r.tensor(0), r.generator(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_poisson_nll_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"poisson_nll_loss(Tensor input, Tensor target, bool log_input, bool full, double eps, int64_t reduction)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_poisson_nll_loss(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toDouble(4), r.toInt64(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_polygamma(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"polygamma(int64_t n, Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_polygamma(r.toInt64(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_polygamma(r.toInt64(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pow(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pow(Tensor input, Tensor exponent, *, Tensor out=None)", | |
"pow(Scalar self, Tensor exponent, *, Tensor out=None)", | |
"pow(Tensor input, Scalar exponent, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_pow(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_pow(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_pow(r.scalar(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_pow(r.scalar(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 2) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_pow(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_pow(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_prelu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"prelu(Tensor input, Tensor weight)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_prelu(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_prod(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"prod(Tensor input)", | |
"prod(Tensor input, *, ScalarType dtype)", | |
"prod(Tensor input, int64_t dim, *, ScalarType dtype, Tensor out=None)", | |
"prod(Tensor input, int64_t dim, bool keepdim, *, ScalarType dtype, Tensor out=None)", | |
"prod(Tensor input, int64_t dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_prod(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_prod(r.tensor(0), r.scalartype(1))); | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.scalartype(2))); | |
} else { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.scalartype(2), r.tensor(3))); | |
} | |
} else if (r.idx == 3) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2), r.scalartype(3))); | |
} else { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2), r.scalartype(3), r.tensor(4))); | |
} | |
} else if (r.idx == 4) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_prod(r.tensor(0), r.toInt64(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_pstrf(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"pstrf(Tensor input, bool upper=True, Scalar tol=-1, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"u", ""}, {"pivot", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.pstrf_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"u", ""}, {"pivot", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.pstrf", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(&type1, dispatch_pstrf(r.tensor(0), r.toBool(1), r.scalar(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type0, dispatch_pstrf(r.tensor(0), r.toBool(1), r.scalar(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_q_scale(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"q_scale(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_q_scale(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_q_zero_point(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"q_zero_point(Tensor input)", | |
}, /*traceable=*/false); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_q_zero_point(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_qr(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"qr(Tensor input, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"Q", ""}, {"R", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.qr_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"Q", ""}, {"R", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.qr", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(&type1, dispatch_qr(r.tensor(0))); | |
} else { | |
auto results = r.tensorlist_n<2>(1); | |
return wrap(&type0, dispatch_qr(r.tensor(0), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_quantize_linear(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"quantize_linear(Tensor input, double scale, int64_t zero_point, ScalarType dtype)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_quantize_linear(r.tensor(0), r.toDouble(1), r.toInt64(2), r.scalartype(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_quantized_gru_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh)", | |
}, /*traceable=*/true); | |
ParsedArgs<14> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_quantized_gru_cell(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5), r.tensor(6), r.tensor(7), r.tensor(8), r.tensor(9), r.scalar(10), r.scalar(11), r.scalar(12), r.scalar(13))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_quantized_lstm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"quantized_lstm(Tensor input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_quantized_lstm(r.tensor(0), r.tensorlist(1), r.tensorlist(2), r.toBool(3), r.toInt64(4), r.toDouble(5), r.toBool(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_quantized_lstm_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"quantized_lstm_cell(Tensor input, TensorList hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh)", | |
}, /*traceable=*/true); | |
ParsedArgs<14> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_quantized_lstm_cell(r.tensor(0), r.tensorlist(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5), r.tensor(6), r.tensor(7), r.tensor(8), r.tensor(9), r.scalar(10), r.scalar(11), r.scalar(12), r.scalar(13))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_quantized_rnn_relu_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh)", | |
}, /*traceable=*/true); | |
ParsedArgs<14> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_quantized_rnn_relu_cell(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5), r.tensor(6), r.tensor(7), r.tensor(8), r.tensor(9), r.scalar(10), r.scalar(11), r.scalar(12), r.scalar(13))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_quantized_rnn_tanh_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"quantized_rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh)", | |
}, /*traceable=*/true); | |
ParsedArgs<14> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_quantized_rnn_tanh_cell(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5), r.tensor(6), r.tensor(7), r.tensor(8), r.tensor(9), r.scalar(10), r.scalar(11), r.scalar(12), r.scalar(13))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rand(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rand(IntArrayRef size, *, Generator generator, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"rand(IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
auto size = r.intlist(0); | |
auto generator = r.generator(1); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_rand(size, generator, options)); | |
} else { | |
check_out_type_matches(r.tensor(2), r.scalartype(3), r.isNone(3), | |
r.layout(4), r.isNone(4), | |
r.device(5), r.isNone(5)); | |
return wrap(dispatch_rand(r.intlist(0), r.generator(1), r.tensor(2)).set_requires_grad(r.toBool(7))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(1)) { | |
auto size = r.intlist(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_rand(size, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_rand(r.intlist(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rand_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rand_like(Tensor input, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"rand_like(Tensor input, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto dtype = r.scalartypeWithDefault(1, self.scalar_type()); | |
auto device = r.deviceWithDefault(3, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(2, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_rand_like(self, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_rand_like(r.tensor(0)).set_requires_grad(r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_randint_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randint_like(Tensor input, int64_t high, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"randint_like(Tensor input, int64_t high, *, bool requires_grad=False)", | |
"randint_like(Tensor input, int64_t low, int64_t high, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"randint_like(Tensor input, int64_t low, int64_t high, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto high = r.toInt64(1); | |
auto dtype = r.scalartypeWithDefault(2, self.scalar_type()); | |
auto device = r.deviceWithDefault(4, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(3, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_randint_like(self, high, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_randint_like(r.tensor(0), r.toInt64(1)).set_requires_grad(r.toBool(4))); | |
} else if (r.idx == 2) { | |
auto self = r.tensor(0); | |
auto low = r.toInt64(1); | |
auto high = r.toInt64(2); | |
auto dtype = r.scalartypeWithDefault(3, self.scalar_type()); | |
auto device = r.deviceWithDefault(5, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(4, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_randint_like(self, low, high, options)); | |
} else if (r.idx == 3) { | |
return wrap(dispatch_randint_like(r.tensor(0), r.toInt64(1), r.toInt64(2)).set_requires_grad(r.toBool(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_randn(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randn(IntArrayRef size, *, Generator generator, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"randn(IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
auto size = r.intlist(0); | |
auto generator = r.generator(1); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_randn(size, generator, options)); | |
} else { | |
check_out_type_matches(r.tensor(2), r.scalartype(3), r.isNone(3), | |
r.layout(4), r.isNone(4), | |
r.device(5), r.isNone(5)); | |
return wrap(dispatch_randn(r.intlist(0), r.generator(1), r.tensor(2)).set_requires_grad(r.toBool(7))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(1)) { | |
auto size = r.intlist(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_randn(size, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_randn(r.intlist(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_randn_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randn_like(Tensor input, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"randn_like(Tensor input, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto dtype = r.scalartypeWithDefault(1, self.scalar_type()); | |
auto device = r.deviceWithDefault(3, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(2, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_randn_like(self, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_randn_like(r.tensor(0)).set_requires_grad(r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_randperm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"randperm(int64_t n, *, Generator generator, Tensor out=None, ScalarType dtype=torch.int64, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"randperm(int64_t n, *, Tensor out=None, ScalarType dtype=torch.int64, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
auto n = r.toInt64(0); | |
auto generator = r.generator(1); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_randperm(n, generator, options)); | |
} else { | |
check_out_type_matches(r.tensor(2), r.scalartype(3), r.isNone(3), | |
r.layout(4), r.isNone(4), | |
r.device(5), r.isNone(5)); | |
return wrap(dispatch_randperm(r.toInt64(0), r.generator(1), r.tensor(2)).set_requires_grad(r.toBool(7))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(1)) { | |
auto n = r.toInt64(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_randperm(n, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_randperm(r.toInt64(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_reciprocal(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"reciprocal(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_reciprocal(r.tensor(0))); | |
} else { | |
return wrap(dispatch_reciprocal(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_reciprocal_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"reciprocal_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_reciprocal_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_relu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"relu(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_relu(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_relu_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"relu_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_relu_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_remainder(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"remainder(Tensor input, Tensor other, *, Tensor out=None)", | |
"remainder(Tensor input, Scalar other, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_remainder(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_remainder(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_remainder(r.tensor(0), r.scalar(1))); | |
} else { | |
return wrap(dispatch_remainder(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_renorm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"renorm(Tensor input, Scalar p, int64_t dim, Scalar maxnorm, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_renorm(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3))); | |
} else { | |
return wrap(dispatch_renorm(r.tensor(0), r.scalar(1), r.toInt64(2), r.scalar(3), r.tensor(4))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_repeat_interleave(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"repeat_interleave(Tensor repeats)", | |
"repeat_interleave(Tensor input, Tensor repeats, int64_t? dim=c10::nullopt)", | |
"repeat_interleave(Tensor input, int64_t repeats, int64_t? dim=c10::nullopt)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_repeat_interleave(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_repeat_interleave(r.tensor(0), r.tensor(1), r.toInt64Optional(2))); | |
} else if (r.idx == 2) { | |
return wrap(dispatch_repeat_interleave(r.tensor(0), r.toInt64(1), r.toInt64Optional(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_reshape(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"reshape(Tensor input, IntArrayRef shape)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_reshape(r.tensor(0), r.intlist(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_resize_as_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"resize_as_(Tensor input, Tensor the_template)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_resize_as_(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rfft(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rfft(Tensor input, int64_t signal_ndim, bool normalized=False, bool onesided=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rfft(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rnn_relu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rnn_relu(Tensor data, Tensor batch_sizes, Tensor hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional)", | |
"rnn_relu(Tensor input, Tensor hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rnn_relu(r.tensor(0), r.tensor(1), r.tensor(2), r.tensorlist(3), r.toBool(4), r.toInt64(5), r.toDouble(6), r.toBool(7), r.toBool(8))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_rnn_relu(r.tensor(0), r.tensor(1), r.tensorlist(2), r.toBool(3), r.toInt64(4), r.toDouble(5), r.toBool(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rnn_relu_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None)", | |
}, /*traceable=*/false); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rnn_relu_cell(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rnn_tanh(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rnn_tanh(Tensor data, Tensor batch_sizes, Tensor hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional)", | |
"rnn_tanh(Tensor input, Tensor hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rnn_tanh(r.tensor(0), r.tensor(1), r.tensor(2), r.tensorlist(3), r.toBool(4), r.toInt64(5), r.toDouble(6), r.toBool(7), r.toBool(8))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_rnn_tanh(r.tensor(0), r.tensor(1), r.tensorlist(2), r.toBool(3), r.toInt64(4), r.toDouble(5), r.toBool(6), r.toBool(7), r.toBool(8))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rnn_tanh_cell(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None)", | |
}, /*traceable=*/false); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rnn_tanh_cell(r.tensor(0), r.tensor(1), r.tensor(2), r.tensor(3), r.tensor(4), r.tensor(5))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_roll(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"roll(Tensor input, IntArrayRef[1] shifts, IntArrayRef[1] dims=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_roll(r.tensor(0), r.intlist(1), r.intlist(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rot90(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rot90(Tensor input, int64_t k=1, IntArrayRef dims={0,1})", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rot90(r.tensor(0), r.toInt64(1), r.intlist(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_round(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"round(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_round(r.tensor(0))); | |
} else { | |
return wrap(dispatch_round(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_round_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"round_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_round_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rrelu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rrelu(Tensor input, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rrelu(r.tensor(0), r.scalar(1), r.scalar(2), r.toBool(3), r.generator(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rrelu_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rrelu_(Tensor input, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator generator=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rrelu_(r.tensor(0), r.scalar(1), r.scalar(2), r.toBool(3), r.generator(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rsqrt(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rsqrt(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_rsqrt(r.tensor(0))); | |
} else { | |
return wrap(dispatch_rsqrt(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rsqrt_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rsqrt_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rsqrt_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_rsub(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"rsub(Tensor input, Tensor other, *, Scalar alpha=1)", | |
"rsub(Tensor input, Scalar other, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_rsub(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_rsub(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_s_native_addmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"s_native_addmm(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_s_native_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_s_native_addmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_s_native_addmm_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"s_native_addmm_(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_s_native_addmm_(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_scalar_tensor(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"scalar_tensor(Scalar s, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto s = r.scalar(0); | |
auto dtype = r.scalartype(1); | |
auto device = r.device(3); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(2).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_scalar_tensor(s, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_scatter(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"scatter(Tensor input, int64_t dim, Tensor index, Tensor src)", | |
"scatter(Tensor input, int64_t dim, Tensor index, Scalar value)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_scatter(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_scatter(r.tensor(0), r.toInt64(1), r.tensor(2), r.scalar(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_scatter_add(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"scatter_add(Tensor input, int64_t dim, Tensor index, Tensor src)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_scatter_add(r.tensor(0), r.toInt64(1), r.tensor(2), r.tensor(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_select(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"select(Tensor input, int64_t dim, int64_t index)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_select(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_selu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"selu(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_selu(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_selu_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"selu_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_selu_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sigmoid(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sigmoid(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sigmoid(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sigmoid(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sigmoid_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sigmoid_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sigmoid_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sign(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sign(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sign(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sign(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sin(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sin(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sin(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sin(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sin_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sin_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sin_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sinh(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sinh(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sinh(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sinh(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sinh_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sinh_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sinh_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_slogdet(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"slogdet(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"sign", ""}, {"logabsdet", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.slogdet", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
if (r.idx == 0) { | |
return wrap(&type0, dispatch_slogdet(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_smm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"smm(Tensor input, Tensor mat2)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_smm(r.tensor(0), r.tensor(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_softmax(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"softmax(Tensor input, int64_t dim)", | |
"softmax(Tensor input, int64_t dim, ScalarType dtype)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_softmax(r.tensor(0), r.toInt64(1))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_softmax(r.tensor(0), r.toInt64(1), r.scalartype(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_solve(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"solve(Tensor input, Tensor A, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"solution", ""}, {"LU", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.solve", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"solution", ""}, {"LU", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.solve_out", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(&type0, dispatch_solve(r.tensor(0), r.tensor(1))); | |
} else { | |
auto results = r.tensorlist_n<2>(2); | |
return wrap(&type1, dispatch_solve(r.tensor(0), r.tensor(1), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sort(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sort(Tensor input, int64_t dim=-1, bool descending=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.sort_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.sort", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(&type1, dispatch_sort(r.tensor(0), r.toInt64(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type0, dispatch_sort(r.tensor(0), r.toInt64(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_split(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"split(Tensor input, int64_t split_size, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_split(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_split_with_sizes(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"split_with_sizes(Tensor input, IntArrayRef split_sizes, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_split_with_sizes(r.tensor(0), r.intlist(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sqrt(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sqrt(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_sqrt(r.tensor(0))); | |
} else { | |
return wrap(dispatch_sqrt(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sqrt_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sqrt_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sqrt_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_squeeze(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"squeeze(Tensor input)", | |
"squeeze(Tensor input, int64_t dim)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_squeeze(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_squeeze(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sspaddmm(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sspaddmm(Scalar beta, Tensor input, Scalar alpha, Tensor mat1, Tensor mat2)|deprecated", | |
"sspaddmm(Scalar beta, Tensor input, Tensor mat1, Tensor mat2)|deprecated", | |
"sspaddmm(Tensor input, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sspaddmm(r.scalar(0), r.tensor(1), r.scalar(2), r.tensor(3), r.tensor(4))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_sspaddmm(r.scalar(0), r.tensor(1), r.tensor(2), r.tensor(3))); | |
} else if (r.idx == 2) { | |
if (r.isNone(5)) { | |
return wrap(dispatch_sspaddmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4))); | |
} else { | |
return wrap(dispatch_sspaddmm(r.tensor(0), r.tensor(1), r.tensor(2), r.scalar(3), r.scalar(4), r.tensor(5))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_stack(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"stack(TensorList tensors, int64_t dim=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_stack(r.tensorlist(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_stack(r.tensorlist(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_std(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"std(Tensor input, IntArrayRef[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor out=None)", | |
"std(Tensor input, bool unbiased=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_std(r.tensor(0), r.intlist(1), r.toBool(2), r.toBool(3))); | |
} else { | |
return wrap(dispatch_std(r.tensor(0), r.intlist(1), r.toBool(2), r.toBool(3), r.tensor(4))); | |
} | |
} else if (r.idx == 1) { | |
return wrap(dispatch_std(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_std_mean(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"std_mean(Tensor input, IntArrayRef[1] dim, bool unbiased=True, bool keepdim=False)", | |
"std_mean(Tensor input, bool unbiased=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_std_mean(r.tensor(0), r.intlist(1), r.toBool(2), r.toBool(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_std_mean(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_stft(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"stft(Tensor input, int64_t n_fft, int64_t? hop_length=c10::nullopt, int64_t? win_length=c10::nullopt, Tensor? window=None, bool normalized=False, bool onesided=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_stft(r.tensor(0), r.toInt64(1), r.toInt64Optional(2), r.toInt64Optional(3), r.tensor(4), r.toBool(5), r.toBool(6))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sub(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sub(Tensor input, Scalar alpha, Tensor other, *, Tensor out=None)|deprecated", | |
"sub(Tensor input, Tensor other, *, Scalar alpha=1, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.tensor(2))); | |
} else { | |
return wrap(dispatch_sub(r.tensor(0), r.scalar(1), r.tensor(2), r.tensor(3))); | |
} | |
} else if (r.idx == 1) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sub(r.tensor(0), r.tensor(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_sub(r.tensor(0), r.tensor(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_sum(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"sum(Tensor input)", | |
"sum(Tensor input, *, ScalarType dtype)", | |
"sum(Tensor input, IntArrayRef[1] dim, *, ScalarType dtype, Tensor out=None)", | |
"sum(Tensor input, IntArrayRef[1] dim, bool keepdim, *, ScalarType dtype, Tensor out=None)", | |
"sum(Tensor input, IntArrayRef[1] dim, bool keepdim=False, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_sum(r.tensor(0))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_sum(r.tensor(0), r.scalartype(1))); | |
} else if (r.idx == 2) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sum(r.tensor(0), r.intlist(1), r.scalartype(2))); | |
} else { | |
return wrap(dispatch_sum(r.tensor(0), r.intlist(1), r.scalartype(2), r.tensor(3))); | |
} | |
} else if (r.idx == 3) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_sum(r.tensor(0), r.intlist(1), r.toBool(2), r.scalartype(3))); | |
} else { | |
return wrap(dispatch_sum(r.tensor(0), r.intlist(1), r.toBool(2), r.scalartype(3), r.tensor(4))); | |
} | |
} else if (r.idx == 4) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_sum(r.tensor(0), r.intlist(1), r.toBool(2))); | |
} else { | |
return wrap(dispatch_sum(r.tensor(0), r.intlist(1), r.toBool(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_svd(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"svd(Tensor input, bool some=True, bool compute_uv=True, *, TensorList[3] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<6> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"U", ""}, {"S", ""}, {"V", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.svd_out", nullptr, | |
fields0, 3 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"U", ""}, {"S", ""}, {"V", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.svd", nullptr, | |
fields1, 3 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(&type1, dispatch_svd(r.tensor(0), r.toBool(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<3>(3); | |
return wrap(&type0, dispatch_svd(r.tensor(0), r.toBool(1), r.toBool(2), results[0], results[1], results[2])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_symeig(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"symeig(Tensor input, bool eigenvectors=False, bool upper=True, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.symeig_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"eigenvalues", ""}, {"eigenvectors", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.symeig", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(&type1, dispatch_symeig(r.tensor(0), r.toBool(1), r.toBool(2))); | |
} else { | |
auto results = r.tensorlist_n<2>(3); | |
return wrap(&type0, dispatch_symeig(r.tensor(0), r.toBool(1), r.toBool(2), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_t(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"t(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_t(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_take(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"take(Tensor input, Tensor index, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_take(r.tensor(0), r.tensor(1))); | |
} else { | |
return wrap(dispatch_take(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tan(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tan(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_tan(r.tensor(0))); | |
} else { | |
return wrap(dispatch_tan(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tan_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tan_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tan_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tanh(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tanh(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_tanh(r.tensor(0))); | |
} else { | |
return wrap(dispatch_tanh(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tanh_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tanh_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tanh_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tensordot(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tensordot(Tensor input, Tensor other, IntArrayRef dims_self, IntArrayRef dims_other)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_tensordot(r.tensor(0), r.tensor(1), r.intlist(2), r.intlist(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_threshold(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"threshold(Tensor input, Scalar threshold, Scalar value, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(3)) { | |
return wrap(dispatch_threshold(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} else { | |
return wrap(dispatch_threshold(r.tensor(0), r.scalar(1), r.scalar(2), r.tensor(3))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_threshold_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"threshold_(Tensor input, Scalar threshold, Scalar value)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_threshold_(r.tensor(0), r.scalar(1), r.scalar(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_topk(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"topk(Tensor input, int64_t k, int64_t dim=-1, bool largest=True, bool sorted=True, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.topk_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"values", ""}, {"indices", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.topk", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(&type1, dispatch_topk(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), r.toBool(4))); | |
} else { | |
auto results = r.tensorlist_n<2>(5); | |
return wrap(&type0, dispatch_topk(r.tensor(0), r.toInt64(1), r.toInt64(2), r.toBool(3), r.toBool(4), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trace(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trace(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_trace(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_transpose(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"transpose(Tensor input, int64_t dim0, int64_t dim1)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_transpose(r.tensor(0), r.toInt64(1), r.toInt64(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_triangular_solve(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"triangular_solve(Tensor input, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, TensorList[2] out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
static PyStructSequence_Field fields0[] = { | |
{"solution", ""}, {"cloned_coefficient", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc0 = { | |
"torch.return_types.triangular_solve_out", nullptr, | |
fields0, 2 | |
}; | |
static PyTypeObject type0; | |
static bool namedtuple_type_initialized0 = false; | |
if (!namedtuple_type_initialized0) { | |
PyStructSequence_InitType(&type0, &desc0); | |
type0.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized0 = true; | |
} | |
static PyStructSequence_Field fields1[] = { | |
{"solution", ""}, {"cloned_coefficient", ""}, {nullptr} | |
}; | |
static PyStructSequence_Desc desc1 = { | |
"torch.return_types.triangular_solve", nullptr, | |
fields1, 2 | |
}; | |
static PyTypeObject type1; | |
static bool namedtuple_type_initialized1 = false; | |
if (!namedtuple_type_initialized1) { | |
PyStructSequence_InitType(&type1, &desc1); | |
type1.tp_repr = (reprfunc)torch::utils::returned_structseq_repr; | |
namedtuple_type_initialized1 = true; | |
} | |
if (r.idx == 0) { | |
if (r.isNone(5)) { | |
return wrap(&type1, dispatch_triangular_solve(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toBool(4))); | |
} else { | |
auto results = r.tensorlist_n<2>(5); | |
return wrap(&type0, dispatch_triangular_solve(r.tensor(0), r.tensor(1), r.toBool(2), r.toBool(3), r.toBool(4), results[0], results[1])); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tril(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tril(Tensor input, int64_t diagonal=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_tril(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_tril(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_tril_indices(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"tril_indices(int64_t row, int64_t col, int64_t offset=0, *, ScalarType dtype=torch.int64, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto row = r.toInt64(0); | |
auto col = r.toInt64(1); | |
auto offset = r.toInt64(2); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_tril_indices(row, col, offset, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_triplet_margin_loss(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, double margin=1.0, double p=2, double eps=1e-06, bool swap=False, int64_t reduction=Reduction::Mean)", | |
}, /*traceable=*/true); | |
ParsedArgs<8> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_triplet_margin_loss(r.tensor(0), r.tensor(1), r.tensor(2), r.toDouble(3), r.toDouble(4), r.toDouble(5), r.toBool(6), r.toInt64(7))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_triu(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"triu(Tensor input, int64_t diagonal=0, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(2)) { | |
return wrap(dispatch_triu(r.tensor(0), r.toInt64(1))); | |
} else { | |
return wrap(dispatch_triu(r.tensor(0), r.toInt64(1), r.tensor(2))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_triu_indices(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"triu_indices(int64_t row, int64_t col, int64_t offset=0, *, ScalarType dtype=torch.int64, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<9> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto row = r.toInt64(0); | |
auto col = r.toInt64(1); | |
auto offset = r.toInt64(2); | |
auto dtype = r.scalartype(3); | |
auto device = r.device(5); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(4).layout) | |
.requires_grad(r.toBool(7)) | |
.pinned_memory(r.toBool(6)); | |
return wrap(dispatch_triu_indices(row, col, offset, options)); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trunc(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trunc(Tensor input, *, Tensor out=None)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
return wrap(dispatch_trunc(r.tensor(0))); | |
} else { | |
return wrap(dispatch_trunc(r.tensor(0), r.tensor(1))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_trunc_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"trunc_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_trunc_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unbind(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unbind(Tensor input, int64_t dim=0)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unbind(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unique_consecutive(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unique_consecutive(Tensor input, bool return_inverse=False, bool return_counts=False, int64_t? dim=c10::nullopt)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unique_consecutive(r.tensor(0), r.toBool(1), r.toBool(2), r.toInt64Optional(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unique_dim(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unique_dim(Tensor input, int64_t dim, bool sorted=True, bool return_inverse=False, bool return_counts=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unique_dim(r.tensor(0), r.toInt64(1), r.toBool(2), r.toBool(3), r.toBool(4))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_unsqueeze(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"unsqueeze(Tensor input, int64_t dim)", | |
}, /*traceable=*/true); | |
ParsedArgs<2> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_unsqueeze(r.tensor(0), r.toInt64(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_var(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"var(Tensor input, IntArrayRef[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor out=None)", | |
"var(Tensor input, bool unbiased=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<5> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(4)) { | |
return wrap(dispatch_var(r.tensor(0), r.intlist(1), r.toBool(2), r.toBool(3))); | |
} else { | |
return wrap(dispatch_var(r.tensor(0), r.intlist(1), r.toBool(2), r.toBool(3), r.tensor(4))); | |
} | |
} else if (r.idx == 1) { | |
return wrap(dispatch_var(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_var_mean(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"var_mean(Tensor input, IntArrayRef[1] dim, bool unbiased=True, bool keepdim=False)", | |
"var_mean(Tensor input, bool unbiased=True)", | |
}, /*traceable=*/true); | |
ParsedArgs<4> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_var_mean(r.tensor(0), r.intlist(1), r.toBool(2), r.toBool(3))); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_var_mean(r.tensor(0), r.toBool(1))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_where(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"where(Tensor condition, Tensor input, Tensor other)", | |
}, /*traceable=*/true); | |
ParsedArgs<3> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_where(r.tensor(0), r.tensor(1), r.tensor(2))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_zero_(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"zero_(Tensor input)", | |
}, /*traceable=*/true); | |
ParsedArgs<1> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
return wrap(dispatch_zero_(r.tensor(0))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_zeros(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"zeros(IntArrayRef size, *, Tensor out=None, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
if (r.isNone(1)) { | |
auto size = r.intlist(0); | |
auto dtype = r.scalartype(2); | |
auto device = r.device(4); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layout(3).layout) | |
.requires_grad(r.toBool(6)) | |
.pinned_memory(r.toBool(5)); | |
return wrap(dispatch_zeros(size, options)); | |
} else { | |
check_out_type_matches(r.tensor(1), r.scalartype(2), r.isNone(2), | |
r.layout(3), r.isNone(3), | |
r.device(4), r.isNone(4)); | |
return wrap(dispatch_zeros(r.intlist(0), r.tensor(1)).set_requires_grad(r.toBool(6))); | |
} | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyObject * THPVariable_zeros_like(PyObject* self_, PyObject* args, PyObject* kwargs) | |
{ | |
HANDLE_TH_ERRORS | |
static PythonArgParser parser({ | |
"zeros_like(Tensor input, *, ScalarType dtype=None, Layout layout=torch.strided, Device device=None, bool pin_memory=False, bool requires_grad=False)", | |
"zeros_like(Tensor input, *, bool requires_grad=False)", | |
}, /*traceable=*/true); | |
ParsedArgs<7> parsed_args; | |
auto r = parser.parse(args, kwargs, parsed_args); | |
if (r.idx == 0) { | |
auto self = r.tensor(0); | |
auto dtype = r.scalartypeWithDefault(1, self.scalar_type()); | |
auto device = r.deviceWithDefault(3, self.device()); | |
const auto options = TensorOptions() | |
.dtype(dtype) | |
.device(device) | |
.layout(r.layoutWithDefault(2, *torch::getLayout(self.type().backend())).layout) | |
.requires_grad(r.toBool(5)) | |
.pinned_memory(r.toBool(4)); | |
return wrap(dispatch_zeros_like(self, options)); | |
} else if (r.idx == 1) { | |
return wrap(dispatch_zeros_like(r.tensor(0)).set_requires_grad(r.toBool(3))); | |
} | |
Py_RETURN_NONE; | |
END_HANDLE_TH_ERRORS | |
} | |
static PyMethodDef torch_functions[] = { | |
{"arange", (PyCFunction)THPVariable_arange, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"as_tensor", (PyCFunction)THPVariable_as_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dsmm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"from_numpy", (PyCFunction)THPVariable_from_numpy, METH_STATIC | METH_O, NULL}, | |
{"hsmm", (PyCFunction)THPVariable_hspmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_promote_types", (PyCFunction)THPVariable__promote_types, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randint", (PyCFunction)THPVariable_randint, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"range", (PyCFunction)THPVariable_range, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"saddmm", (PyCFunction)THPVariable_sspaddmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sparse_coo_tensor", (PyCFunction)THPVariable_sparse_coo_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"spmm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tensor", (PyCFunction)THPVariable_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"get_device", (PyCFunction)THPVariable_get_device, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__and__", (PyCFunction)THPVariable___and__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__lshift__", (PyCFunction)THPVariable___lshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__or__", (PyCFunction)THPVariable___or__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__rshift__", (PyCFunction)THPVariable___rshift__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"__xor__", (PyCFunction)THPVariable___xor__, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_adaptive_avg_pool2d", (PyCFunction)THPVariable__adaptive_avg_pool2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_addmm", (PyCFunction)THPVariable__addmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_addmm_", (PyCFunction)THPVariable__addmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_addr", (PyCFunction)THPVariable__addr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_addr_", (PyCFunction)THPVariable__addr_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_baddbmm_mkl_", (PyCFunction)THPVariable__baddbmm_mkl_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_batch_norm_impl_index", (PyCFunction)THPVariable__batch_norm_impl_index, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Byte", (PyCFunction)THPVariable__cast_Byte, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Char", (PyCFunction)THPVariable__cast_Char, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Double", (PyCFunction)THPVariable__cast_Double, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Float", (PyCFunction)THPVariable__cast_Float, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Half", (PyCFunction)THPVariable__cast_Half, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Int", (PyCFunction)THPVariable__cast_Int, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Long", (PyCFunction)THPVariable__cast_Long, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cast_Short", (PyCFunction)THPVariable__cast_Short, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cat", (PyCFunction)THPVariable__cat, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_convolution", (PyCFunction)THPVariable__convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_convolution_nogroup", (PyCFunction)THPVariable__convolution_nogroup, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_copy_from", (PyCFunction)THPVariable__copy_from, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_ctc_loss", (PyCFunction)THPVariable__ctc_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cudnn_ctc_loss", (PyCFunction)THPVariable__cudnn_ctc_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cudnn_init_dropout_state", (PyCFunction)THPVariable__cudnn_init_dropout_state, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cudnn_rnn", (PyCFunction)THPVariable__cudnn_rnn, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cudnn_rnn_flatten_weight", (PyCFunction)THPVariable__cudnn_rnn_flatten_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cufft_clear_plan_cache", (PyCFunction)THPVariable__cufft_clear_plan_cache, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cufft_get_plan_cache_max_size", (PyCFunction)THPVariable__cufft_get_plan_cache_max_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cufft_get_plan_cache_size", (PyCFunction)THPVariable__cufft_get_plan_cache_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_cufft_set_plan_cache_max_size", (PyCFunction)THPVariable__cufft_set_plan_cache_max_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_debug_has_internal_overlap", (PyCFunction)THPVariable__debug_has_internal_overlap, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_dequantize_linear", (PyCFunction)THPVariable__dequantize_linear, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_dim_arange", (PyCFunction)THPVariable__dim_arange, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_dirichlet_grad", (PyCFunction)THPVariable__dirichlet_grad, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_embedding_bag", (PyCFunction)THPVariable__embedding_bag, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_empty_affine_quantized", (PyCFunction)THPVariable__empty_affine_quantized, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_fft_with_size", (PyCFunction)THPVariable__fft_with_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_fused_dropout", (PyCFunction)THPVariable__fused_dropout, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_index_copy_", (PyCFunction)THPVariable__index_copy_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_log_softmax", (PyCFunction)THPVariable__log_softmax, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_log_softmax_backward_data", (PyCFunction)THPVariable__log_softmax_backward_data, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_lu_with_info", (PyCFunction)THPVariable__lu_with_info, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_masked_scale", (PyCFunction)THPVariable__masked_scale, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_max", (PyCFunction)THPVariable__max, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_min", (PyCFunction)THPVariable__min, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_mode", (PyCFunction)THPVariable__mode, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_multinomial_alias_draw", (PyCFunction)THPVariable__multinomial_alias_draw, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_multinomial_alias_setup", (PyCFunction)THPVariable__multinomial_alias_setup, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_nnpack_available", (PyCFunction)THPVariable__nnpack_available, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_nnpack_spatial_convolution", (PyCFunction)THPVariable__nnpack_spatial_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_pack_padded_sequence", (PyCFunction)THPVariable__pack_padded_sequence, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_pad_packed_sequence", (PyCFunction)THPVariable__pad_packed_sequence, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_per_tensor_affine_qtensor", (PyCFunction)THPVariable__per_tensor_affine_qtensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_reshape_from_tensor", (PyCFunction)THPVariable__reshape_from_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_s_where", (PyCFunction)THPVariable__s_where, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sample_dirichlet", (PyCFunction)THPVariable__sample_dirichlet, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_shape_as_tensor", (PyCFunction)THPVariable__shape_as_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sobol_engine_draw", (PyCFunction)THPVariable__sobol_engine_draw, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sobol_engine_ff_", (PyCFunction)THPVariable__sobol_engine_ff_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sobol_engine_initialize_state_", (PyCFunction)THPVariable__sobol_engine_initialize_state_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sobol_engine_scramble_", (PyCFunction)THPVariable__sobol_engine_scramble_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_softmax", (PyCFunction)THPVariable__softmax, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_softmax_backward_data", (PyCFunction)THPVariable__softmax_backward_data, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sparse_addmm", (PyCFunction)THPVariable__sparse_addmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sparse_mm", (PyCFunction)THPVariable__sparse_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_sparse_sum", (PyCFunction)THPVariable__sparse_sum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_standard_gamma", (PyCFunction)THPVariable__standard_gamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_standard_gamma_grad", (PyCFunction)THPVariable__standard_gamma_grad, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_std", (PyCFunction)THPVariable__std, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_trilinear", (PyCFunction)THPVariable__trilinear, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_unique", (PyCFunction)THPVariable__unique, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_unique2", (PyCFunction)THPVariable__unique2, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_var", (PyCFunction)THPVariable__var, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_weight_norm", (PyCFunction)THPVariable__weight_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"_weight_norm_cuda_interface", (PyCFunction)THPVariable__weight_norm_cuda_interface, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"abs", (PyCFunction)THPVariable_abs, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"abs_", (PyCFunction)THPVariable_abs_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"acos", (PyCFunction)THPVariable_acos, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"acos_", (PyCFunction)THPVariable_acos_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"adaptive_avg_pool1d", (PyCFunction)THPVariable_adaptive_avg_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"adaptive_max_pool1d", (PyCFunction)THPVariable_adaptive_max_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"add", (PyCFunction)THPVariable_add, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addbmm", (PyCFunction)THPVariable_addbmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addcdiv", (PyCFunction)THPVariable_addcdiv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addcmul", (PyCFunction)THPVariable_addcmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmm", (PyCFunction)THPVariable_addmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmv", (PyCFunction)THPVariable_addmv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addmv_", (PyCFunction)THPVariable_addmv_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"addr", (PyCFunction)THPVariable_addr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"affine_grid_generator", (PyCFunction)THPVariable_affine_grid_generator, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"all", (PyCFunction)THPVariable_all, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"allclose", (PyCFunction)THPVariable_allclose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"alpha_dropout", (PyCFunction)THPVariable_alpha_dropout, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"alpha_dropout_", (PyCFunction)THPVariable_alpha_dropout_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"any", (PyCFunction)THPVariable_any, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"argmax", (PyCFunction)THPVariable_argmax, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"argmin", (PyCFunction)THPVariable_argmin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"argsort", (PyCFunction)THPVariable_argsort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"as_strided", (PyCFunction)THPVariable_as_strided, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"as_strided_", (PyCFunction)THPVariable_as_strided_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"asin", (PyCFunction)THPVariable_asin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"asin_", (PyCFunction)THPVariable_asin_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan", (PyCFunction)THPVariable_atan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan2", (PyCFunction)THPVariable_atan2, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"atan_", (PyCFunction)THPVariable_atan_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"avg_pool1d", (PyCFunction)THPVariable_avg_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"baddbmm", (PyCFunction)THPVariable_baddbmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bartlett_window", (PyCFunction)THPVariable_bartlett_window, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm", (PyCFunction)THPVariable_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm_backward_elemt", (PyCFunction)THPVariable_batch_norm_backward_elemt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm_backward_reduce", (PyCFunction)THPVariable_batch_norm_backward_reduce, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm_elemt", (PyCFunction)THPVariable_batch_norm_elemt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm_gather_stats", (PyCFunction)THPVariable_batch_norm_gather_stats, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm_stats", (PyCFunction)THPVariable_batch_norm_stats, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"batch_norm_update_stats", (PyCFunction)THPVariable_batch_norm_update_stats, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bernoulli", (PyCFunction)THPVariable_bernoulli, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bilinear", (PyCFunction)THPVariable_bilinear, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"binary_cross_entropy_with_logits", (PyCFunction)THPVariable_binary_cross_entropy_with_logits, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bincount", (PyCFunction)THPVariable_bincount, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"blackman_window", (PyCFunction)THPVariable_blackman_window, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"bmm", (PyCFunction)THPVariable_bmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"broadcast_tensors", (PyCFunction)THPVariable_broadcast_tensors, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cartesian_prod", (PyCFunction)THPVariable_cartesian_prod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cat", (PyCFunction)THPVariable_cat, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cdist", (PyCFunction)THPVariable_cdist, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ceil", (PyCFunction)THPVariable_ceil, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ceil_", (PyCFunction)THPVariable_ceil_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"celu", (PyCFunction)THPVariable_celu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"celu_", (PyCFunction)THPVariable_celu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"chain_matmul", (PyCFunction)THPVariable_chain_matmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cholesky", (PyCFunction)THPVariable_cholesky, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cholesky_inverse", (PyCFunction)THPVariable_cholesky_inverse, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cholesky_solve", (PyCFunction)THPVariable_cholesky_solve, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"chunk", (PyCFunction)THPVariable_chunk, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clamp", (PyCFunction)THPVariable_clamp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clamp_", (PyCFunction)THPVariable_clamp_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clamp_max", (PyCFunction)THPVariable_clamp_max, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clamp_max_", (PyCFunction)THPVariable_clamp_max_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clamp_min", (PyCFunction)THPVariable_clamp_min, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clamp_min_", (PyCFunction)THPVariable_clamp_min_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"clone", (PyCFunction)THPVariable_clone, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"combinations", (PyCFunction)THPVariable_combinations, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"constant_pad_nd", (PyCFunction)THPVariable_constant_pad_nd, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv1d", (PyCFunction)THPVariable_conv1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv2d", (PyCFunction)THPVariable_conv2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv3d", (PyCFunction)THPVariable_conv3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_tbc", (PyCFunction)THPVariable_conv_tbc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_transpose1d", (PyCFunction)THPVariable_conv_transpose1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_transpose2d", (PyCFunction)THPVariable_conv_transpose2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"conv_transpose3d", (PyCFunction)THPVariable_conv_transpose3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"convolution", (PyCFunction)THPVariable_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cos", (PyCFunction)THPVariable_cos, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cos_", (PyCFunction)THPVariable_cos_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cosh", (PyCFunction)THPVariable_cosh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cosh_", (PyCFunction)THPVariable_cosh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cosine_embedding_loss", (PyCFunction)THPVariable_cosine_embedding_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cosine_similarity", (PyCFunction)THPVariable_cosine_similarity, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cross", (PyCFunction)THPVariable_cross, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ctc_loss", (PyCFunction)THPVariable_ctc_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_affine_grid_generator", (PyCFunction)THPVariable_cudnn_affine_grid_generator, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_batch_norm", (PyCFunction)THPVariable_cudnn_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution", (PyCFunction)THPVariable_cudnn_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_convolution_transpose", (PyCFunction)THPVariable_cudnn_convolution_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_grid_sampler", (PyCFunction)THPVariable_cudnn_grid_sampler, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cudnn_is_acceptable", (PyCFunction)THPVariable_cudnn_is_acceptable, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cumprod", (PyCFunction)THPVariable_cumprod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"cumsum", (PyCFunction)THPVariable_cumsum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dequantize", (PyCFunction)THPVariable_dequantize, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"det", (PyCFunction)THPVariable_det, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"detach", (PyCFunction)THPVariable_detach, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"detach_", (PyCFunction)THPVariable_detach_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"diag", (PyCFunction)THPVariable_diag, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"diag_embed", (PyCFunction)THPVariable_diag_embed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"diagflat", (PyCFunction)THPVariable_diagflat, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"diagonal", (PyCFunction)THPVariable_diagonal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"digamma", (PyCFunction)THPVariable_digamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dist", (PyCFunction)THPVariable_dist, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"div", (PyCFunction)THPVariable_div, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dot", (PyCFunction)THPVariable_dot, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dropout", (PyCFunction)THPVariable_dropout, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"dropout_", (PyCFunction)THPVariable_dropout_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eig", (PyCFunction)THPVariable_eig, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"einsum", (PyCFunction)THPVariable_einsum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"embedding", (PyCFunction)THPVariable_embedding, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"embedding_bag", (PyCFunction)THPVariable_embedding_bag, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"embedding_renorm_", (PyCFunction)THPVariable_embedding_renorm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"empty", (PyCFunction)THPVariable_empty, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"empty_like", (PyCFunction)THPVariable_empty_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"empty_strided", (PyCFunction)THPVariable_empty_strided, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eq", (PyCFunction)THPVariable_eq, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"equal", (PyCFunction)THPVariable_equal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erf", (PyCFunction)THPVariable_erf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erf_", (PyCFunction)THPVariable_erf_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erfc", (PyCFunction)THPVariable_erfc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erfc_", (PyCFunction)THPVariable_erfc_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"erfinv", (PyCFunction)THPVariable_erfinv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"exp", (PyCFunction)THPVariable_exp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"exp_", (PyCFunction)THPVariable_exp_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"expm1", (PyCFunction)THPVariable_expm1, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"expm1_", (PyCFunction)THPVariable_expm1_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"eye", (PyCFunction)THPVariable_eye, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fbgemm_is_cpu_supported", (PyCFunction)THPVariable_fbgemm_is_cpu_supported, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fbgemm_linear_int8_weight", (PyCFunction)THPVariable_fbgemm_linear_int8_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fbgemm_linear_quantize_weight", (PyCFunction)THPVariable_fbgemm_linear_quantize_weight, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fbgemm_pack_quantized_matrix", (PyCFunction)THPVariable_fbgemm_pack_quantized_matrix, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"feature_alpha_dropout", (PyCFunction)THPVariable_feature_alpha_dropout, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"feature_alpha_dropout_", (PyCFunction)THPVariable_feature_alpha_dropout_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"feature_dropout", (PyCFunction)THPVariable_feature_dropout, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"feature_dropout_", (PyCFunction)THPVariable_feature_dropout_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fft", (PyCFunction)THPVariable_fft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fill_", (PyCFunction)THPVariable_fill_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"flatten", (PyCFunction)THPVariable_flatten, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"flip", (PyCFunction)THPVariable_flip, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"floor", (PyCFunction)THPVariable_floor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"floor_", (PyCFunction)THPVariable_floor_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"fmod", (PyCFunction)THPVariable_fmod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"frac", (PyCFunction)THPVariable_frac, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"frac_", (PyCFunction)THPVariable_frac_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"frobenius_norm", (PyCFunction)THPVariable_frobenius_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"from_file", (PyCFunction)THPVariable_from_file, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"full", (PyCFunction)THPVariable_full, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"full_like", (PyCFunction)THPVariable_full_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gather", (PyCFunction)THPVariable_gather, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ge", (PyCFunction)THPVariable_ge, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gels", (PyCFunction)THPVariable_gels, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"geqrf", (PyCFunction)THPVariable_geqrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ger", (PyCFunction)THPVariable_ger, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"grid_sampler", (PyCFunction)THPVariable_grid_sampler, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"grid_sampler_2d", (PyCFunction)THPVariable_grid_sampler_2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"grid_sampler_3d", (PyCFunction)THPVariable_grid_sampler_3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"group_norm", (PyCFunction)THPVariable_group_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gru", (PyCFunction)THPVariable_gru, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gru_cell", (PyCFunction)THPVariable_gru_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"gt", (PyCFunction)THPVariable_gt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"hamming_window", (PyCFunction)THPVariable_hamming_window, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"hann_window", (PyCFunction)THPVariable_hann_window, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"hardshrink", (PyCFunction)THPVariable_hardshrink, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"hinge_embedding_loss", (PyCFunction)THPVariable_hinge_embedding_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"histc", (PyCFunction)THPVariable_histc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"hspmm", (PyCFunction)THPVariable_hspmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ifft", (PyCFunction)THPVariable_ifft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_add", (PyCFunction)THPVariable_index_add, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_copy", (PyCFunction)THPVariable_index_copy, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_fill", (PyCFunction)THPVariable_index_fill, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_put", (PyCFunction)THPVariable_index_put, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_put_", (PyCFunction)THPVariable_index_put_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"index_select", (PyCFunction)THPVariable_index_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"instance_norm", (PyCFunction)THPVariable_instance_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"int_repr", (PyCFunction)THPVariable_int_repr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"inverse", (PyCFunction)THPVariable_inverse, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"irfft", (PyCFunction)THPVariable_irfft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_complex", (PyCFunction)THPVariable_is_complex, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_distributed", (PyCFunction)THPVariable_is_distributed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_floating_point", (PyCFunction)THPVariable_is_floating_point, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_nonzero", (PyCFunction)THPVariable_is_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_same_size", (PyCFunction)THPVariable_is_same_size, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"is_signed", (PyCFunction)THPVariable_is_signed, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"isclose", (PyCFunction)THPVariable_isclose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"isnan", (PyCFunction)THPVariable_isnan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"kl_div", (PyCFunction)THPVariable_kl_div, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"kthvalue", (PyCFunction)THPVariable_kthvalue, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"layer_norm", (PyCFunction)THPVariable_layer_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"le", (PyCFunction)THPVariable_le, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lerp", (PyCFunction)THPVariable_lerp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lgamma", (PyCFunction)THPVariable_lgamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"linspace", (PyCFunction)THPVariable_linspace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log", (PyCFunction)THPVariable_log, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log10", (PyCFunction)THPVariable_log10, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log10_", (PyCFunction)THPVariable_log10_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log1p", (PyCFunction)THPVariable_log1p, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log1p_", (PyCFunction)THPVariable_log1p_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log2", (PyCFunction)THPVariable_log2, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log2_", (PyCFunction)THPVariable_log2_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log_", (PyCFunction)THPVariable_log_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"log_softmax", (PyCFunction)THPVariable_log_softmax, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"logdet", (PyCFunction)THPVariable_logdet, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"logspace", (PyCFunction)THPVariable_logspace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"logsumexp", (PyCFunction)THPVariable_logsumexp, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lstm", (PyCFunction)THPVariable_lstm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lstm_cell", (PyCFunction)THPVariable_lstm_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lt", (PyCFunction)THPVariable_lt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"lu_solve", (PyCFunction)THPVariable_lu_solve, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"margin_ranking_loss", (PyCFunction)THPVariable_margin_ranking_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"masked_fill", (PyCFunction)THPVariable_masked_fill, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"masked_scatter", (PyCFunction)THPVariable_masked_scatter, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"masked_select", (PyCFunction)THPVariable_masked_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"matmul", (PyCFunction)THPVariable_matmul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"matrix_power", (PyCFunction)THPVariable_matrix_power, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"matrix_rank", (PyCFunction)THPVariable_matrix_rank, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max", (PyCFunction)THPVariable_max, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max_pool1d", (PyCFunction)THPVariable_max_pool1d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max_pool1d_with_indices", (PyCFunction)THPVariable_max_pool1d_with_indices, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max_pool2d", (PyCFunction)THPVariable_max_pool2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"max_pool3d", (PyCFunction)THPVariable_max_pool3d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mean", (PyCFunction)THPVariable_mean, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"median", (PyCFunction)THPVariable_median, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"meshgrid", (PyCFunction)THPVariable_meshgrid, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"min", (PyCFunction)THPVariable_min, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"miopen_batch_norm", (PyCFunction)THPVariable_miopen_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"miopen_convolution", (PyCFunction)THPVariable_miopen_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"miopen_convolution_transpose", (PyCFunction)THPVariable_miopen_convolution_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"miopen_depthwise_convolution", (PyCFunction)THPVariable_miopen_depthwise_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mkldnn_adaptive_avg_pool2d", (PyCFunction)THPVariable_mkldnn_adaptive_avg_pool2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mkldnn_convolution", (PyCFunction)THPVariable_mkldnn_convolution, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mkldnn_convolution_backward_weights", (PyCFunction)THPVariable_mkldnn_convolution_backward_weights, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mkldnn_max_pool2d", (PyCFunction)THPVariable_mkldnn_max_pool2d, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mkldnn_reshape", (PyCFunction)THPVariable_mkldnn_reshape, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mm", (PyCFunction)THPVariable_mm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mode", (PyCFunction)THPVariable_mode, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mul", (PyCFunction)THPVariable_mul, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"multinomial", (PyCFunction)THPVariable_multinomial, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mv", (PyCFunction)THPVariable_mv, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"mvlgamma", (PyCFunction)THPVariable_mvlgamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"narrow", (PyCFunction)THPVariable_narrow, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"native_batch_norm", (PyCFunction)THPVariable_native_batch_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"native_norm", (PyCFunction)THPVariable_native_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ne", (PyCFunction)THPVariable_ne, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"neg", (PyCFunction)THPVariable_neg, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"neg_", (PyCFunction)THPVariable_neg_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"nonzero", (PyCFunction)THPVariable_nonzero, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"norm", (PyCFunction)THPVariable_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"norm_except_dim", (PyCFunction)THPVariable_norm_except_dim, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"normal", (PyCFunction)THPVariable_normal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"nuclear_norm", (PyCFunction)THPVariable_nuclear_norm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"numel", (PyCFunction)THPVariable_numel, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ones", (PyCFunction)THPVariable_ones, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ones_like", (PyCFunction)THPVariable_ones_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"orgqr", (PyCFunction)THPVariable_orgqr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"ormqr", (PyCFunction)THPVariable_ormqr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pairwise_distance", (PyCFunction)THPVariable_pairwise_distance, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pdist", (PyCFunction)THPVariable_pdist, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pin_memory", (PyCFunction)THPVariable_pin_memory, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pinverse", (PyCFunction)THPVariable_pinverse, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pixel_shuffle", (PyCFunction)THPVariable_pixel_shuffle, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"poisson", (PyCFunction)THPVariable_poisson, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"poisson_nll_loss", (PyCFunction)THPVariable_poisson_nll_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"polygamma", (PyCFunction)THPVariable_polygamma, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pow", (PyCFunction)THPVariable_pow, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"prelu", (PyCFunction)THPVariable_prelu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"prod", (PyCFunction)THPVariable_prod, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"pstrf", (PyCFunction)THPVariable_pstrf, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"q_scale", (PyCFunction)THPVariable_q_scale, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"q_zero_point", (PyCFunction)THPVariable_q_zero_point, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"qr", (PyCFunction)THPVariable_qr, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"quantize_linear", (PyCFunction)THPVariable_quantize_linear, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"quantized_gru_cell", (PyCFunction)THPVariable_quantized_gru_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"quantized_lstm", (PyCFunction)THPVariable_quantized_lstm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"quantized_lstm_cell", (PyCFunction)THPVariable_quantized_lstm_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"quantized_rnn_relu_cell", (PyCFunction)THPVariable_quantized_rnn_relu_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"quantized_rnn_tanh_cell", (PyCFunction)THPVariable_quantized_rnn_tanh_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rand", (PyCFunction)THPVariable_rand, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rand_like", (PyCFunction)THPVariable_rand_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randint_like", (PyCFunction)THPVariable_randint_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randn", (PyCFunction)THPVariable_randn, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randn_like", (PyCFunction)THPVariable_randn_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"randperm", (PyCFunction)THPVariable_randperm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"reciprocal", (PyCFunction)THPVariable_reciprocal, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"reciprocal_", (PyCFunction)THPVariable_reciprocal_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"relu", (PyCFunction)THPVariable_relu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"relu_", (PyCFunction)THPVariable_relu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"remainder", (PyCFunction)THPVariable_remainder, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"renorm", (PyCFunction)THPVariable_renorm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"repeat_interleave", (PyCFunction)THPVariable_repeat_interleave, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"reshape", (PyCFunction)THPVariable_reshape, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"resize_as_", (PyCFunction)THPVariable_resize_as_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rfft", (PyCFunction)THPVariable_rfft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rnn_relu", (PyCFunction)THPVariable_rnn_relu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rnn_relu_cell", (PyCFunction)THPVariable_rnn_relu_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rnn_tanh", (PyCFunction)THPVariable_rnn_tanh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rnn_tanh_cell", (PyCFunction)THPVariable_rnn_tanh_cell, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"roll", (PyCFunction)THPVariable_roll, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rot90", (PyCFunction)THPVariable_rot90, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"round", (PyCFunction)THPVariable_round, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"round_", (PyCFunction)THPVariable_round_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rrelu", (PyCFunction)THPVariable_rrelu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rrelu_", (PyCFunction)THPVariable_rrelu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rsqrt", (PyCFunction)THPVariable_rsqrt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rsqrt_", (PyCFunction)THPVariable_rsqrt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"rsub", (PyCFunction)THPVariable_rsub, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"s_native_addmm", (PyCFunction)THPVariable_s_native_addmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"s_native_addmm_", (PyCFunction)THPVariable_s_native_addmm_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"scalar_tensor", (PyCFunction)THPVariable_scalar_tensor, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"scatter", (PyCFunction)THPVariable_scatter, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"scatter_add", (PyCFunction)THPVariable_scatter_add, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"select", (PyCFunction)THPVariable_select, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"selu", (PyCFunction)THPVariable_selu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"selu_", (PyCFunction)THPVariable_selu_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sigmoid", (PyCFunction)THPVariable_sigmoid, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sigmoid_", (PyCFunction)THPVariable_sigmoid_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sign", (PyCFunction)THPVariable_sign, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sin", (PyCFunction)THPVariable_sin, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sin_", (PyCFunction)THPVariable_sin_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sinh", (PyCFunction)THPVariable_sinh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sinh_", (PyCFunction)THPVariable_sinh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"slogdet", (PyCFunction)THPVariable_slogdet, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"smm", (PyCFunction)THPVariable_smm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"softmax", (PyCFunction)THPVariable_softmax, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"solve", (PyCFunction)THPVariable_solve, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sort", (PyCFunction)THPVariable_sort, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"split", (PyCFunction)THPVariable_split, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"split_with_sizes", (PyCFunction)THPVariable_split_with_sizes, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sqrt", (PyCFunction)THPVariable_sqrt, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sqrt_", (PyCFunction)THPVariable_sqrt_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"squeeze", (PyCFunction)THPVariable_squeeze, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sspaddmm", (PyCFunction)THPVariable_sspaddmm, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"stack", (PyCFunction)THPVariable_stack, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"std", (PyCFunction)THPVariable_std, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"std_mean", (PyCFunction)THPVariable_std_mean, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"stft", (PyCFunction)THPVariable_stft, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sub", (PyCFunction)THPVariable_sub, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"sum", (PyCFunction)THPVariable_sum, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"svd", (PyCFunction)THPVariable_svd, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"symeig", (PyCFunction)THPVariable_symeig, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"t", (PyCFunction)THPVariable_t, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"take", (PyCFunction)THPVariable_take, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tan", (PyCFunction)THPVariable_tan, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tan_", (PyCFunction)THPVariable_tan_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tanh", (PyCFunction)THPVariable_tanh, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tanh_", (PyCFunction)THPVariable_tanh_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tensordot", (PyCFunction)THPVariable_tensordot, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"threshold", (PyCFunction)THPVariable_threshold, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"threshold_", (PyCFunction)THPVariable_threshold_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"topk", (PyCFunction)THPVariable_topk, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trace", (PyCFunction)THPVariable_trace, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"transpose", (PyCFunction)THPVariable_transpose, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"triangular_solve", (PyCFunction)THPVariable_triangular_solve, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tril", (PyCFunction)THPVariable_tril, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"tril_indices", (PyCFunction)THPVariable_tril_indices, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"triplet_margin_loss", (PyCFunction)THPVariable_triplet_margin_loss, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"triu", (PyCFunction)THPVariable_triu, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"triu_indices", (PyCFunction)THPVariable_triu_indices, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trunc", (PyCFunction)THPVariable_trunc, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"trunc_", (PyCFunction)THPVariable_trunc_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unbind", (PyCFunction)THPVariable_unbind, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unique_consecutive", (PyCFunction)THPVariable_unique_consecutive, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unique_dim", (PyCFunction)THPVariable_unique_dim, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"unsqueeze", (PyCFunction)THPVariable_unsqueeze, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"var", (PyCFunction)THPVariable_var, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"var_mean", (PyCFunction)THPVariable_var_mean, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"where", (PyCFunction)THPVariable_where, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"zero_", (PyCFunction)THPVariable_zero_, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"zeros", (PyCFunction)THPVariable_zeros, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{"zeros_like", (PyCFunction)THPVariable_zeros_like, METH_VARARGS | METH_KEYWORDS | METH_STATIC, NULL}, | |
{NULL} | |
}; | |
static PyTypeObject THPVariableFunctions = { | |
PyVarObject_HEAD_INIT(NULL, 0) | |
"torch._C._VariableFunctions", /* tp_name */ | |
0, /* tp_basicsize */ | |
0, /* tp_itemsize */ | |
0, /* tp_dealloc */ | |
0, /* tp_print */ | |
0, /* tp_getattr */ | |
0, /* tp_setattr */ | |
0, /* tp_reserved */ | |
0, /* tp_repr */ | |
0, /* tp_as_number */ | |
0, /* tp_as_sequence */ | |
0, /* tp_as_mapping */ | |
0, /* tp_hash */ | |
0, /* tp_call */ | |
0, /* tp_str */ | |
0, /* tp_getattro */ | |
0, /* tp_setattro */ | |
0, /* tp_as_buffer */ | |
Py_TPFLAGS_DEFAULT, /* tp_flags */ | |
NULL, /* tp_doc */ | |
0, /* tp_traverse */ | |
0, /* tp_clear */ | |
0, /* tp_richcompare */ | |
0, /* tp_weaklistoffset */ | |
0, /* tp_iter */ | |
0, /* tp_iternext */ | |
torch_functions, /* tp_methods */ | |
0, /* tp_members */ | |
0, /* tp_getset */ | |
0, /* tp_base */ | |
0, /* tp_dict */ | |
0, /* tp_descr_get */ | |
0, /* tp_descr_set */ | |
0, /* tp_dictoffset */ | |
0, /* tp_init */ | |
0, /* tp_alloc */ | |
0 /* tp_new */ | |
}; | |
void initTorchFunctions(PyObject* module) { | |
if (PyType_Ready(&THPVariableFunctions) < 0) { | |
throw python_error(); | |
} | |
Py_INCREF(&THPVariableFunctions); | |
if (PyModule_AddObject(module, "_VariableFunctions", (PyObject*)&THPVariableFunctions) < 0) { | |
throw python_error(); | |
} | |
} | |
}} // namespace torch::autograd |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment