Skip to content

Instantly share code, notes, and snippets.

@colllin
Last active January 1, 2020 15:26
Show Gist options
  • Star 3 You must be signed in to star a gist
  • Fork 2 You must be signed in to fork a gist
  • Save colllin/0b146b154c4351f9a40f741a28bff1e3 to your computer and use it in GitHub Desktop.
Save colllin/0b146b154c4351f9a40f741a28bff1e3 to your computer and use it in GitHub Desktop.
PyTorch AdamW optimizer
# Based on https://github.com/pytorch/pytorch/pull/3740
import torch
import math
class AdamW(torch.optim.Optimizer):
"""Implements AdamW algorithm.
It has been proposed in `Fixing Weight Decay Regularization in Adam`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
.. Fixing Weight Decay Regularization in Adam:
https://arxiv.org/abs/1711.05101
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
super(AdamW, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('AdamW does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# according to the paper, this penalty should come after the bias correction
# if group['weight_decay'] != 0:
# grad = grad.add(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
# w = w - wd * lr * w
if group['weight_decay'] != 0:
p.data.add_(-group['weight_decay'] * group['lr'], p.data)
# w = w - lr * w.grad
p.data.addcdiv_(-step_size, exp_avg, denom)
# w = w - wd * lr * w - lr * w.grad
# See http://www.fast.ai/2018/07/02/adam-weight-decay/
return loss
@colllin
Copy link
Author

colllin commented Jul 31, 2018

Original implementation from pytorch/pytorch#3740
Fixed per the AdamW description in http://www.fast.ai/2018/07/02/adam-weight-decay/:

  • Compute weight decay before applying gradient step.
  • Multiply the weight decay by the learning rate.

@eifuentes
Copy link

this is great! thank you! waiting for the merge into master, using this for now! nice catch in the lua impl with the copy 👍

@DeepAlchemist
Copy link

Hi, as the original paper shows, i.e., the green region in Algorithm 2.
图片

it should be
p.data.add_(-group['weight_decay']* ScheduleMultiplier, p.data) --- (1)
rather than
p.data.add_(-group['weight_decay'] * group['lr'], p.data) --- (2)
Do you know why p.data in AdamW is not multiplied by the learning rate?

@ShherAfghanMalik
Copy link

Thanks for this explanation.
Kindly can you guys check my implementation in c++?
`template
void Adam(vector &dW1, vector &dW2, vector &dW3, vector &W1, vector &W2, vector &W3, T LR, T lambda){

T beta_1 = 0.9;
T beta_2 = 0.999;
T epsilon = 1e-8;
T m_cap, v_cap;
T step_size;
size_t k =0;

size_t wsize = dW1.size() + dW2.size() + dW3.size();
static vector <T> m_t(wsize);
static vector <T> v_t(wsize);
static size_t t = 1;
size_t n = 0;

for(auto& i: dW1){
   // i = i + W1[k];
    m_cap = (1-pow(beta_1, t));
    v_cap = (1-pow(beta_2, t));
    step_size = LR * (sqrt(v_cap) / m_cap);
    m_t[n] = beta_1*m_t[n] + (1-beta_1)*i;
    v_t[n] = beta_2*v_t[n] + (1-beta_2)*(i*i);
    W1[k] = (W1[k]- (LR*W1[k]*lambda)) - (step_size * (m_t[n]/(sqrt(v_t[n]) + epsilon)));
    n++;
    k++;
}
k = 0;
for(auto& i: dW2){
   // i = i + W2[k];
    m_cap = (1-pow(beta_1, t));
    v_cap = (1-pow(beta_2, t));
    step_size = LR * (sqrt(v_cap) / m_cap);
    m_t[n] = beta_1*m_t[n] + (1-beta_1)*i;
    v_t[n] = beta_2*v_t[n] + (1-beta_2)*(i*i);
    W2[k] = (W2[k]- (LR*W2[k]*lambda)) - (step_size * (m_t[n]/(sqrt(v_t[n]) + epsilon)));
    n++;
    k++;
}
k = 0;
for(auto& i: dW3){
    //i = i + W3[k];
    m_cap = (1-pow(beta_1, t));
    v_cap = (1-pow(beta_2, t));
    step_size = LR * (sqrt(v_cap) / m_cap);
    m_t[n] = beta_1*m_t[n] + (1-beta_1)*i;
    v_t[n] = beta_2*v_t[n] + (1-beta_2)*(i*i);
    // p.data.mul_(1 - group['weight_decay']).addcdiv_(-step_size, exp_avg, denom)
    W3[k] = (W3[k]- (LR*W3[k]*lambda)) - (step_size * (m_t[n]/(sqrt(v_t[n]) + epsilon)));
    n++;
    k++;
}

t += 1;

}`

And I am modifying my Learning rate and weight decay like below after each epoch.
lr *= (1. / (1. + (0.001 * iter_num))); lambda = weight_decay*(sqrt(double(BATCH_SIZE)/double((10000*iter_num)))); iter_num ++;

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment