Skip to content

Instantly share code, notes, and snippets.

@conceptofmind
Last active January 3, 2023 05:42
Show Gist options
  • Save conceptofmind/48038a568f804082bb78499d54af421a to your computer and use it in GitHub Desktop.
Save conceptofmind/48038a568f804082bb78499d54af421a to your computer and use it in GitHub Desktop.
t5_pytorch_test
import torch
from torch import nn
import torch.nn.functional as F
import math
from einops import rearrange
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# residual wrapper
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
# pre-normalization wrapper
# they use layernorm without bias
class T5LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.ones(dim))
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = T5LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
# feedforward layer
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.ReLU(),
nn.Dropout(dropout), # optional dropout
nn.Linear(inner_dim, dim)
)
def forward(self, x):
return self.net(x)
# T5 relative positional bias
class T5RelativePositionBias(nn.Module):
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 12):
super().__init__()
self.scale = scale
self.causal = causal
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
ret = 0
n = -relative_position
if not causal:
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
def forward(self, qk_dots):
i, j, device = *qk_dots.shape[-2:], qk_dots.device
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
k_pos = torch.arange(j, dtype = torch.long, device = device)
rel_pos = k_pos[None, :] - q_pos[:, None]
rp_bucket = self._relative_position_bucket(
rel_pos,
causal = self.causal,
num_buckets = self.num_buckets,
max_distance = self.max_distance
)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> h i j')
return qk_dots + (bias * self.scale)
# T5 Self Attention
class T5SelfAttention(nn.Module):
def __init__(
self,
*,
dim,
heads = 12,
dim_head = 64,
causal = False,
dropout = 0.
):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.causal = causal
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_k = nn.Linear(dim, inner_dim, bias = False)
self.to_v = nn.Linear(dim, inner_dim, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
self.relative_position_bias = T5RelativePositionBias(
scale = dim_head ** -0.5,
causal = causal,
heads = heads
)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
q = q * self.scale
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
sim = self.relative_position_bias(sim)
# mask
mask_value = -torch.finfo(sim.dtype).max
if mask is not None:
sim = sim.masked_fill_(~mask, mask_value)
if self.causal:
i, j = sim.shape[-2:]
causal_mask = torch.ones((i, j), dtype = torch.bool, device = x.device).triu(j - i + 1)
sim = sim.masked_fill(causal_mask, mask_value)
# attention
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# aggregate
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
# merge heads
out = rearrange(out, 'b h n d -> b n (h d)')
# combine heads and linear output
return self.to_out(out)
# T5 Cross Attention
class T5CrossAttention(nn.Module):
def __init__(
self,
*,
dim,
context_dim = None,
heads = 12,
dim_head = 64,
dropout = 0.
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_k = nn.Linear(context_dim, inner_dim, bias = False)
self.to_v = nn.Linear(context_dim, inner_dim, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
# self.relative_position_bias = T5RelativePositionBias(
# scale = dim_head ** -0.5,
# causal = False,
# heads = heads
# )
self.dropout = nn.Dropout(dropout)
def forward(self, x, context, mask = None, context_mask = None):
b, n, _, h = *x.shape, self.heads
kv_input = default(context, x)
q, k, v = self.to_q(x), self.to_k(kv_input), self.to_v(kv_input)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
q = q * self.scale
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k)
#sim = self.relative_position_bias(sim)
# mask
mask_value = -torch.finfo(sim.dtype).max
if mask is not None:
sim = sim.masked_fill_(~mask, mask_value)
if context_mask is not None:
sim = sim.masked_fill_(~context_mask[:, None, :], mask_value)
# attention
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# aggregate
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
# merge heads
out = rearrange(out, 'b h n d -> b n (h d)')
# combine heads and linear output
return self.to_out(out)
# T5 Encoder
class T5Encoder(nn.Module):
def __init__(
self,
*,
dim,
num_tokens,
#max_seq_len,
depth,
heads = 12,
dim_head = 64,
causal = False,
mlp_mult = 4,
dropout = 0.
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
#self.pos_emb = nn.Embedding(max_seq_len, dim)
self.layer = nn.ModuleList([])
for _ in range(depth):
self.layer.append(nn.ModuleList([
Residual(PreNorm(dim, T5SelfAttention(dim = dim, heads = heads, dim_head = dim_head, causal = causal, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim = dim, mult = mlp_mult, dropout = dropout))),
]))
self.final_norm = T5LayerNorm(dim)
def forward(self, x, mask = None):
x = self.token_emb(x)
#x = x + self.pos_emb(torch.arange(x.shape[1], device = x.device))
for attn, mlp in self.layer:
x = attn(x, mask = mask)
x = mlp(x)
x = self.final_norm(x)
return x
# T5 Decoder
class T5Decoder(nn.Module):
def __init__(
self,
*,
dim,
num_tokens,
#max_seq_len,
depth,
heads = 12,
dim_head = 64,
causal = True,
mlp_mult = 4,
dropout = 0.
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
#self.pos_emb = nn.Embedding(max_seq_len, dim)
self.layer = nn.ModuleList([])
for _ in range(depth):
self.layer.append(nn.ModuleList([
Residual(PreNorm(dim, T5SelfAttention(dim = dim, heads = heads, dim_head = dim_head, causal = causal, dropout = dropout))),
Residual(PreNorm(dim, T5CrossAttention(dim = dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim = dim, mult = mlp_mult, dropout = dropout))),
]))
self.final_norm = T5LayerNorm(dim)
def forward(self, x, context, mask = None, context_mask = None):
x = self.token_emb(x)
#x = x + self.pos_emb(torch.arange(x.shape[1], device = x.device))
for attn, cross_attn, mlp in self.layer:
x = attn(x, mask = mask)
x = cross_attn(x, context = context, mask = mask, context_mask = context_mask)
x = mlp(x)
x = self.final_norm(x)
return x
# T5
class T5(nn.Module):
def __init__(
self,
*,
dim,
#max_seq_len,
enc_num_tokens,
enc_depth,
enc_heads,
enc_dim_head,
enc_mlp_mult,
dec_num_tokens,
dec_depth,
dec_heads,
dec_dim_head,
dec_mlp_mult,
dropout = 0.,
tie_token_emb = True
):
super().__init__()
self.embedding = nn.Embedding(enc_num_tokens, dim)
#self.pos_emb = nn.Embedding(max_seq_len, dim)
self.encoder = T5Encoder(
dim = dim,
#max_seq_len = max_seq_len,
num_tokens = enc_num_tokens,
depth = enc_depth,
heads = enc_heads,
dim_head = enc_dim_head,
mlp_mult = enc_mlp_mult,
dropout = dropout
)
self.decoder = T5Decoder(
dim = dim,
#max_seq_len= max_seq_len,
num_tokens = dec_num_tokens,
depth = dec_depth,
heads = dec_heads,
dim_head = dec_dim_head,
mlp_mult = dec_mlp_mult,
dropout = dropout
)
self.to_logits = nn.Linear(dim, dec_num_tokens)
# tie weights
if tie_token_emb:
self.encoder.token_emb.weight = self.decoder.token_emb.weight
def forward(self, src, tgt, mask = None, context_mask = None):
x = self.embedding(src)
#x = x + self.pos_emb(torch.arange(x.shape[1], device = x.device))
x = self.encoder(src, mask = mask)
x = self.decoder(tgt, x, mask = mask, context_mask = context_mask)
x = self.to_logits(x)
return x
if __name__ == '__main__':
model = T5(
dim = 768,
#max_seq_len = 1024,
enc_num_tokens = 512,
enc_depth = 6,
enc_heads = 12,
enc_dim_head = 64,
enc_mlp_mult = 4,
dec_num_tokens = 512,
dec_depth = 6,
dec_heads = 12,
dec_dim_head = 64,
dec_mlp_mult = 4,
dropout = 0.,
tie_token_emb = True
)
src = torch.randint(0, 512, (1, 1024))
src_mask = torch.ones_like(src).bool()
tgt = torch.randint(0, 512, (1, 1024))
loss = model(src, tgt, mask = src_mask)
print(loss.shape) #torch.Size([1, 1024, 512])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment