Skip to content

Instantly share code, notes, and snippets.

@cosmic-cortex
Last active January 27, 2020 14:43
Show Gist options
  • Save cosmic-cortex/6ee14ef6b4d34983b2f59f3700180820 to your computer and use it in GitHub Desktop.
Save cosmic-cortex/6ee14ef6b4d34983b2f59f3700180820 to your computer and use it in GitHub Desktop.
Implementation of the machine learning model for the API
import joblib
import numpy as np
from pathlib import Path
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
class Model:
def __init__(self, model_path: str = None):
self._model = None
self._model_path = model_path
self.load()
def train(self, X: np.ndarray, y: np.ndarray):
self._model = RandomForestRegressor()
self._model.fit(X, y)
return self
def predict(self, X: np.ndarray) -> np.ndarray:
return self._model.predict(X)
def save(self):
if self._model is not None:
joblib.dump(self._model, self._model_path)
else:
raise TypeError("The model is not trained yet, use .train() before saving")
def load(self):
try:
self._model = joblib.load(self._model_path)
except:
self._model = None
return self
model_path = Path(__file__).parent / "model.joblib"
n_features = load_boston(return_X_y=True)[0].shape[1]
model = Model(model_path)
def get_model():
return model
if __name__ == "__main__":
X, y = load_boston(return_X_y=True)
model.train(X, y)
model.save()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment