Created
October 14, 2019 10:15
-
-
Save cprakashagr/996cf83c1b97cac781d4f913fe7c1a05 to your computer and use it in GitHub Desktop.
The data augmentation scripts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# | |
# Copyright (c) 2016 Matthew Earl | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included | |
# in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN | |
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR | |
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE | |
# USE OR OTHER DEALINGS IN THE SOFTWARE. | |
# The code has been taken from: https://github.com/matthewearl/deep-anpr/blob/master/gen.py | |
""" | |
Generate training and test images. | |
""" | |
__all__ = ( | |
'generate_ims', | |
) | |
import itertools | |
import math | |
import os | |
import random | |
import sys | |
import cv2 | |
import numpy | |
from PIL import Image | |
from PIL import ImageDraw | |
from PIL import ImageFont | |
import common | |
FONT_DIR = "./fonts" | |
FONT_HEIGHT = 32 # Pixel size to which the chars are resized | |
OUTPUT_SHAPE = (64, 128) | |
CHARS = common.CHARS + " " | |
def make_char_ims(font_path, output_height): | |
font_size = output_height * 4 | |
font = ImageFont.truetype(font_path, font_size) | |
height = max(font.getsize(c)[1] for c in CHARS) | |
for c in CHARS: | |
width = font.getsize(c)[0] | |
im = Image.new("RGBA", (width, height), (0, 0, 0)) | |
draw = ImageDraw.Draw(im) | |
draw.text((0, 0), c, (255, 255, 255), font=font) | |
scale = float(output_height) / height | |
im = im.resize((int(width * scale), output_height), Image.ANTIALIAS) | |
yield c, numpy.array(im)[:, :, 0].astype(numpy.float32) / 255. | |
def euler_to_mat(yaw, pitch, roll): | |
# Rotate clockwise about the Y-axis | |
c, s = math.cos(yaw), math.sin(yaw) | |
M = numpy.matrix([[ c, 0., s], | |
[ 0., 1., 0.], | |
[ -s, 0., c]]) | |
# Rotate clockwise about the X-axis | |
c, s = math.cos(pitch), math.sin(pitch) | |
M = numpy.matrix([[ 1., 0., 0.], | |
[ 0., c, -s], | |
[ 0., s, c]]) * M | |
# Rotate clockwise about the Z-axis | |
c, s = math.cos(roll), math.sin(roll) | |
M = numpy.matrix([[ c, -s, 0.], | |
[ s, c, 0.], | |
[ 0., 0., 1.]]) * M | |
return M | |
def pick_colors(): | |
first = True | |
while first or plate_color - text_color < 0.3: | |
text_color = random.random() | |
plate_color = random.random() | |
if text_color > plate_color: | |
text_color, plate_color = plate_color, text_color | |
first = False | |
return text_color, plate_color | |
def make_affine_transform(from_shape, to_shape, | |
min_scale, max_scale, | |
scale_variation=1.0, | |
rotation_variation=1.0, | |
translation_variation=1.0): | |
out_of_bounds = False | |
from_size = numpy.array([[from_shape[1], from_shape[0]]]).T | |
to_size = numpy.array([[to_shape[1], to_shape[0]]]).T | |
scale = random.uniform((min_scale + max_scale) * 0.5 - | |
(max_scale - min_scale) * 0.5 * scale_variation, | |
(min_scale + max_scale) * 0.5 + | |
(max_scale - min_scale) * 0.5 * scale_variation) | |
if scale > max_scale or scale < min_scale: | |
out_of_bounds = True | |
roll = random.uniform(-0.3, 0.3) * rotation_variation | |
pitch = random.uniform(-0.2, 0.2) * rotation_variation | |
yaw = random.uniform(-1.2, 1.2) * rotation_variation | |
# Compute a bounding box on the skewed input image (`from_shape`). | |
M = euler_to_mat(yaw, pitch, roll)[:2, :2] | |
h, w = from_shape | |
corners = numpy.matrix([[-w, +w, -w, +w], | |
[-h, -h, +h, +h]]) * 0.5 | |
skewed_size = numpy.array(numpy.max(M * corners, axis=1) - | |
numpy.min(M * corners, axis=1)) | |
# Set the scale as large as possible such that the skewed and scaled shape | |
# is less than or equal to the desired ratio in either dimension. | |
scale *= numpy.min(to_size / skewed_size) | |
# Set the translation such that the skewed and scaled image falls within | |
# the output shape's bounds. | |
trans = (numpy.random.random((2,1)) - 0.5) * translation_variation | |
trans = ((2.0 * trans) ** 5.0) / 2.0 | |
if numpy.any(trans < -0.5) or numpy.any(trans > 0.5): | |
out_of_bounds = True | |
trans = (to_size - skewed_size * scale) * trans | |
center_to = to_size / 2. | |
center_from = from_size / 2. | |
M = euler_to_mat(yaw, pitch, roll)[:2, :2] | |
M *= scale | |
M = numpy.hstack([M, trans + center_to - M * center_from]) | |
return M, out_of_bounds | |
def generate_code(): | |
return "{}{}{}{} {}{}{}".format( | |
random.choice(common.LETTERS), | |
random.choice(common.LETTERS), | |
random.choice(common.DIGITS), | |
random.choice(common.DIGITS), | |
random.choice(common.LETTERS), | |
random.choice(common.LETTERS), | |
random.choice(common.LETTERS)) | |
def rounded_rect(shape, radius): | |
out = numpy.ones(shape) | |
out[:radius, :radius] = 0.0 | |
out[-radius:, :radius] = 0.0 | |
out[:radius, -radius:] = 0.0 | |
out[-radius:, -radius:] = 0.0 | |
cv2.circle(out, (radius, radius), radius, 1.0, -1) | |
cv2.circle(out, (radius, shape[0] - radius), radius, 1.0, -1) | |
cv2.circle(out, (shape[1] - radius, radius), radius, 1.0, -1) | |
cv2.circle(out, (shape[1] - radius, shape[0] - radius), radius, 1.0, -1) | |
return out | |
def generate_plate(font_height, char_ims): | |
h_padding = random.uniform(0.2, 0.4) * font_height | |
v_padding = random.uniform(0.1, 0.3) * font_height | |
spacing = font_height * random.uniform(-0.05, 0.05) | |
radius = 1 + int(font_height * 0.1 * random.random()) | |
code = generate_code() | |
text_width = sum(char_ims[c].shape[1] for c in code) | |
text_width += (len(code) - 1) * spacing | |
out_shape = (int(font_height + v_padding * 2), | |
int(text_width + h_padding * 2)) | |
text_color, plate_color = pick_colors() | |
text_mask = numpy.zeros(out_shape) | |
x = h_padding | |
y = v_padding | |
for c in code: | |
char_im = char_ims[c] | |
ix, iy = int(x), int(y) | |
text_mask[iy:iy + char_im.shape[0], ix:ix + char_im.shape[1]] = char_im | |
x += char_im.shape[1] + spacing | |
plate = (numpy.ones(out_shape) * plate_color * (1. - text_mask) + | |
numpy.ones(out_shape) * text_color * text_mask) | |
return plate, rounded_rect(out_shape, radius), code.replace(" ", "") | |
def generate_bg(num_bg_images): | |
found = False | |
while not found: | |
fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1)) | |
bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255. | |
if (bg.shape[1] >= OUTPUT_SHAPE[1] and | |
bg.shape[0] >= OUTPUT_SHAPE[0]): | |
found = True | |
x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1]) | |
y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0]) | |
bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]] | |
return bg | |
def generate_im(char_ims, num_bg_images): | |
bg = generate_bg(num_bg_images) | |
plate, plate_mask, code = generate_plate(FONT_HEIGHT, char_ims) | |
M, out_of_bounds = make_affine_transform( | |
from_shape=plate.shape, | |
to_shape=bg.shape, | |
min_scale=0.6, | |
max_scale=0.875, | |
rotation_variation=1.0, | |
scale_variation=1.5, | |
translation_variation=1.2) | |
plate = cv2.warpAffine(plate, M, (bg.shape[1], bg.shape[0])) | |
plate_mask = cv2.warpAffine(plate_mask, M, (bg.shape[1], bg.shape[0])) | |
out = plate * plate_mask + bg * (1.0 - plate_mask) | |
out = cv2.resize(out, (OUTPUT_SHAPE[1], OUTPUT_SHAPE[0])) | |
out += numpy.random.normal(scale=0.05, size=out.shape) | |
out = numpy.clip(out, 0., 1.) | |
return out, code, not out_of_bounds | |
def load_fonts(folder_path): | |
font_char_ims = {} | |
fonts = [f for f in os.listdir(folder_path) if f.endswith('.ttf')] | |
for font in fonts: | |
font_char_ims[font] = dict(make_char_ims(os.path.join(folder_path, | |
font), | |
FONT_HEIGHT)) | |
return fonts, font_char_ims | |
def generate_ims(): | |
""" | |
Generate number plate images. | |
:return: | |
Iterable of number plate images. | |
""" | |
variation = 1.0 | |
fonts, font_char_ims = load_fonts(FONT_DIR) | |
num_bg_images = len(os.listdir("bgs")) | |
while True: | |
yield generate_im(font_char_ims[random.choice(fonts)], num_bg_images) | |
if __name__ == "__main__": | |
os.mkdir("test") | |
im_gen = itertools.islice(generate_ims(), int(sys.argv[1])) | |
for img_idx, (im, c, p) in enumerate(im_gen): | |
fname = "test/{:08d}_{}_{}.png".format(img_idx, c, | |
"1" if p else "0") | |
print fname | |
cv2.imwrite(fname, im * 255.) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment