Skip to content

Instantly share code, notes, and snippets.

@crcrpar
Last active January 28, 2018 14:39
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save crcrpar/a06c1375449ee9bb73d0f5970afe9894 to your computer and use it in GitHub Desktop.
Save crcrpar/a06c1375449ee9bb73d0f5970afe9894 to your computer and use it in GitHub Desktop.
an example: pytorch to caffe2
from __future__ import print_function
import argparse
from datetime import datetime as dt
import numpy as np
import onnx_caffe2.backend
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.onnx
import torch.optim as optim
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import onnx
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if args.cuda:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, args.epochs + 1):
train(epoch)
test()
print('# Export trained model!')
dummy_input = Variable(torch.randn(64, 1, 28, 28))
if args.cuda:
dummy_input = dummy_input.cuda()
model.train(False)
torch.onnx.export(model, dummy_input, 'trained.proto', verbose=True)
print('# Load exported model via onnx')
onnx_model = onnx.load("trained.proto")
onnx.helper.printable_graph(onnx_model.graph)
print('# copy to caffe2')
device = 'CUDA:0' if args.cuda else 'CPU'
rep = onnx_caffe2.backend.prepare(onnx_model, device=device)
inputs = np.random.normal(size=(64, 1, 28, 28)).astype(np.float32)
pytorch_timer = list()
for _ in range(10):
pytorch_start = dt.now()
outputs = model(dummy_input)
pytorch_end = dt.now()
pytorch_timer.append((pytorch_end - pytorch_start).total_seconds())
caffe2_timer = list()
for _ in range(10):
caffe2_start = dt.now()
outputs = rep.run(inputs)
caffe2_end = dt.now()
caffe2_timer.append((caffe2_end - caffe2_start).total_seconds())
print('PyTorch')
print(np.mean(pytorch_timer))
print(np.std(pytorch_timer))
print('Caffe2')
print(np.mean(caffe2_timer))
print(np.std(caffe2_timer))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment