Skip to content

Instantly share code, notes, and snippets.

Last active April 10, 2016 20:25
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
What would you like to do?
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import cps
import seaborn as sns
# This is a quick hack that gets the job done :/
def repulsion(arr):
thresh = 2 # Max shift is 2 percentage points
for i in range(len(arr)-1):
diff = arr[i+1]-arr[i]
if diff < thresh:
arr[i] = arr[i+1]-thresh
if np.diff(arr).min() < thresh:
arr = repulsion(arr)
return arr
def percent_format(x):
return str(int(np.round(x))) + '%'
df = pd.read_csv('data.txt')
n = len(df)
vo = 0.0 # text vertical offset
hoa = 0.06 # horiztonal offset of agreement percent number
hoi = 0.26 # horizontal offset of issue text
# Apply repulsion, so that text doesn't overlap
df = df.sort_values('expert_agreement')
df['expert_plot_position'] = repulsion(df['expert_agreement'].copy().values)
df = df.sort_values('public_agreement')
df['public_plot_position'] = repulsion(df['public_agreement'].copy().values)
# Create columns with nicely formatted percents
df['expert_agreement_percent'] = df['expert_agreement'].apply(percent_format)
df['public_agreement_percent'] = df['public_agreement'].apply(percent_format)
for i in range(n):
# Nicely formatted percents
plt.text(0 - hoa, df.ix[i, 'expert_plot_position'] + vo, df.ix[i, 'expert_agreement_percent'], ha='right', va='center', fontsize=8)
plt.text(1 + hoa, df.ix[i, 'public_plot_position'] + vo, df.ix[i, 'public_agreement_percent'], ha='left', va='center', fontsize=8)
# Policy question text
plt.text(0 - hoi, df.ix[i, 'expert_plot_position'] + vo, df.ix[i, 'issue'], ha='right', va='center', fontsize=8)
plt.text(1 + hoi, df.ix[i, 'public_plot_position'] + vo, df.ix[i, 'issue'], ha='left', va='center', fontsize=8)
# Gray lines
plt.plot([0, 1], [df.ix[i, 'expert_plot_position'], df.ix[i, 'public_plot_position']], linewidth=0.5, color=[0.5, 0.5, 0.5], zorder=1)
plt.scatter(np.zeros(n), df['expert_plot_position'].values,, zorder=2)
plt.scatter(np.ones(n), df['public_plot_position'].values,, zorder=2)
# Titles
plt.text(-0.3, 105, "Expert Agreement", ha='right', fontsize=16)
plt.text(1.3, 105, "Public Agreement", ha='left', fontsize=16)
# Clean up chart
sns.despine(bottom=True, left=True) # Remove axes
plt.gca().xaxis.set_major_locator(plt.NullLocator()) # Remove xticks
plt.gca().yaxis.set_major_locator(plt.NullLocator()) # Remove yticks
plt.xlim([-2.4, 3.4])
plt.ylim([-2, 108])
plt.savefig('fig_econ_poll.png', dpi=250)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment