-
-
Save ctrekker/f50b8cc19fbd2c4cf54a9997e3393a2d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### A Pluto.jl notebook ### | |
# v0.12.18 | |
using Markdown | |
using InteractiveUtils | |
# ╔═╡ b6cede50-fe79-11ea-10c2-13b9e4851b06 | |
begin | |
using LinearAlgebra | |
using Plots | |
using PlutoUI | |
end | |
# ╔═╡ 4e5ac200-fdff-11ea-3d80-d56549011cac | |
md" | |
## Solving the TopologicalComputer N point interpolation problem in 3 dimensions | |
The TopologicalComputer N point interpolation problem in 3 dimensions involves the generation of a continuous surface across a region defined by 4 points. This problem becomes more difficult in higher dimensions, as the number of permutations of {0, 1} for each dimension grows with the function 2^d, whereas the number of points required to make a linear function is equal to d. | |
The solution I present is to use a similar method to the tracing above. Given 4 points, draw two lines between the points such that all 4 points have one line intersecting them. Then start from one end drawing traces between them such that a surface is drawn in the region bounded by the four points. Hello world | |
" | |
# ╔═╡ 63395150-fdff-11ea-317a-956ff6431475 | |
P = [ | |
0 0 1 # A | |
1 0 1 # B | |
0 1 1 # C | |
1 1 -1 # D | |
] | |
# ╔═╡ 0ff87db0-fe7a-11ea-3afb-ddca5f27acab | |
begin | |
A = P[1, :] | |
B = P[2, :] | |
C = P[3, :] | |
D = P[4, :] | |
end | |
# ╔═╡ 7e3e4710-fe79-11ea-3d4b-4fc54cc58d07 | |
vecMag(P1, P2) = √((P2 .- P1) ⋅ (P2 .- P1)) | |
# ╔═╡ 00d26220-fe83-11ea-3cf6-492a6e1f3339 | |
proj(u, v) = (u ⋅ v) / (v ⋅ v) * v | |
# ╔═╡ b19ba752-3dc2-11eb-0b48-2bb17d047b06 | |
md" | |
$D_1(P)=||\overrightarrow{AP}-proj_{\overrightarrow{AB}}\overrightarrow{AP}||$ | |
$D_2(P)=||\overrightarrow{CP}-proj_{\overrightarrow{CD}}\overrightarrow{CP}||$ | |
" | |
# ╔═╡ 74c51212-fe81-11ea-2b20-45511a32be82 | |
D1(P) = vecMag((P .- A[1:2]) - proj((P .- A[1:2]), (B[1:2] .- A[1:2])), [0, 0]) | |
# ╔═╡ 453a9720-fe83-11ea-2ef2-fb2f40fb9394 | |
D2(P) = vecMag((P .- C[1:2]) - proj((P .- C[1:2]), (D[1:2] .- C[1:2])), [0, 0]) | |
# ╔═╡ fd028552-3dc3-11eb-2538-31025cd4a16c | |
md" | |
$P_{ab}(P)=\frac{P\circ\overrightarrow{AB}}{||\overrightarrow{AB}||\frac{D_2(P)}{D_1(P) + D_2(P)}+||\overrightarrow{CD}||\frac{D_1(P)}{D_1(P)+D_2(P)}} + A_{xy}$ | |
$P_{cd}(P)=\frac{P\circ\overrightarrow{CD}}{||\overrightarrow{AB}||\frac{D_2(P)}{D_1(P) + D_2(P)}+||\overrightarrow{CD}||\frac{D_1(P)}{D_1(P)+D_2(P)}} + C_{xy}$ | |
" | |
# ╔═╡ 246e2a50-fe80-11ea-1181-594649e2ce2e | |
Pab(P) = (P .* (B[1:2] .- A[1:2])) / ((vecMag(A[1:2], B[1:2]) * (D2(P) / (D1(P) + D2(P)))) + (vecMag(C[1:2], D[1:2]) * (D1(P) / (D1(P) + D2(P))))) + A[1:2] | |
# ╔═╡ 209fcaf0-fe85-11ea-0d9e-794a77c715a4 | |
Pcd(P) = (P .* (D[1:2] .- C[1:2])) / ((vecMag(A[1:2], B[1:2]) * (D2(P) / (D1(P) + D2(P)))) + (vecMag(C[1:2], D[1:2]) * (D1(P) / (D1(P) + D2(P))))) + C[1:2] | |
# ╔═╡ a015f1e0-3dc0-11eb-3cef-1ddcb8c1f656 | |
md" | |
$Z_{P_{ab}}(P)=(B_z-A_z)\frac{||\overrightarrow{AP_{ab}(P)}||}{||\overrightarrow{AB}||}+A_z$ | |
$Z_{P_{cd}}(P)=(D_z-C_z)\frac{||\overrightarrow{CP_{ab}(P)}||}{||\overrightarrow{CD}||}+C_z$ | |
" | |
# ╔═╡ 252d9b00-fe86-11ea-269c-959635d8db35 | |
ZPab(P) = ((B[3] - A[3]) / vecMag(A[1:2], B[1:2])) * vecMag(Pab(P), A[1:2]) + A[3] | |
# ╔═╡ 7eb90970-fe86-11ea-346f-2b9cf9f8ea22 | |
ZPcd(P) = ((D[3] - C[3]) / vecMag(C[1:2], D[1:2])) * vecMag(Pcd(P), C[1:2]) + C[3] | |
# ╔═╡ 5bc2b230-3dc5-11eb-3dd7-a51cce70eebc | |
md" | |
$Z(P)=\left(Z_{P_{ab}}(P)-Z_{P_{cd}}(P)\right)\frac{||\overrightarrow{P_{cd}(P)P}||}{||\overrightarrow{P_{ab}(P)P_{cd}(P)}||}+Z_{P_{cd}}(P)$ | |
" | |
# ╔═╡ ba242d60-fe85-11ea-3397-8da61bd274ca | |
Z(P) = ((ZPab(P) - ZPcd(P)) / vecMag(Pab(P), Pcd(P))) * vecMag(Pcd(P), P) + ZPcd(P) | |
# ╔═╡ de52a1d0-3dbe-11eb-3860-3b72f74e299d | |
Z(X, Y) = Z([X, Y]) | |
# ╔═╡ b4b47ce0-3dbe-11eb-230a-a7eaa71cc91c | |
x = min(P[:, 1]...):0.1:max(P[:, 1]...) | |
# ╔═╡ b775bfc0-3dbe-11eb-3ec1-453899565e99 | |
y = min(P[:, 2]...):0.1:max(P[:, 2]...) | |
# ╔═╡ 015cae7e-fe88-11ea-353a-a9907ace0173 | |
plot(x, y, Z, st=:surface) | |
# ╔═╡ 601d1460-fe87-11ea-1066-0d86847a1ad9 | |
begin | |
p = plot(x, y, Z, st=:contour) | |
plot!(p, P[:, 1], P[:, 2], st=:scatter) | |
end | |
# ╔═╡ 6562e540-3dbf-11eb-358e-ed02cee52f6d | |
P[:, 1:2] | |
# ╔═╡ Cell order: | |
# ╟─4e5ac200-fdff-11ea-3d80-d56549011cac | |
# ╠═b6cede50-fe79-11ea-10c2-13b9e4851b06 | |
# ╠═63395150-fdff-11ea-317a-956ff6431475 | |
# ╠═0ff87db0-fe7a-11ea-3afb-ddca5f27acab | |
# ╠═7e3e4710-fe79-11ea-3d4b-4fc54cc58d07 | |
# ╠═00d26220-fe83-11ea-3cf6-492a6e1f3339 | |
# ╟─b19ba752-3dc2-11eb-0b48-2bb17d047b06 | |
# ╠═74c51212-fe81-11ea-2b20-45511a32be82 | |
# ╠═453a9720-fe83-11ea-2ef2-fb2f40fb9394 | |
# ╟─fd028552-3dc3-11eb-2538-31025cd4a16c | |
# ╠═246e2a50-fe80-11ea-1181-594649e2ce2e | |
# ╠═209fcaf0-fe85-11ea-0d9e-794a77c715a4 | |
# ╟─a015f1e0-3dc0-11eb-3cef-1ddcb8c1f656 | |
# ╠═252d9b00-fe86-11ea-269c-959635d8db35 | |
# ╠═7eb90970-fe86-11ea-346f-2b9cf9f8ea22 | |
# ╟─5bc2b230-3dc5-11eb-3dd7-a51cce70eebc | |
# ╠═ba242d60-fe85-11ea-3397-8da61bd274ca | |
# ╠═de52a1d0-3dbe-11eb-3860-3b72f74e299d | |
# ╠═b4b47ce0-3dbe-11eb-230a-a7eaa71cc91c | |
# ╠═b775bfc0-3dbe-11eb-3ec1-453899565e99 | |
# ╠═015cae7e-fe88-11ea-353a-a9907ace0173 | |
# ╠═601d1460-fe87-11ea-1066-0d86847a1ad9 | |
# ╠═6562e540-3dbf-11eb-358e-ed02cee52f6d |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### A Pluto.jl notebook ### | |
# v0.12.17 | |
using Markdown | |
using InteractiveUtils | |
# ╔═╡ b6cede50-fe79-11ea-10c2-13b9e4851b06 | |
begin | |
using LinearAlgebra | |
using Plots | |
using PlutoUI | |
end | |
# ╔═╡ 4e5ac200-fdff-11ea-3d80-d56549011cac | |
md" | |
## Solving the TopologicalComputer N point interpolation problem in 3 dimensions | |
The TopologicalComputer N point interpolation problem in 3 dimensions involves the generation of a continuous surface across a region defined by 4 points. This problem becomes more difficult in higher dimensions, as the number of permutations of {0, 1} for each dimension grows with the function 2^d, whereas the number of points required to make a linear function is equal to d. | |
The solution I present is to use a similar method to the tracing above. Given 4 points, draw two lines between the points such that all 4 points have one line intersecting them. Then start from one end drawing traces between them such that a surface is drawn in the region bounded by the four points. Hello world | |
" | |
# ╔═╡ 63395150-fdff-11ea-317a-956ff6431475 | |
P = [ | |
0 0 1 # A | |
1 0 1 # B | |
0 1 1 # C | |
1 1 -1 # D | |
] | |
# ╔═╡ 0ff87db0-fe7a-11ea-3afb-ddca5f27acab | |
begin | |
A = P[1, :] | |
B = P[2, :] | |
C = P[3, :] | |
D = P[4, :] | |
end | |
# ╔═╡ 7e3e4710-fe79-11ea-3d4b-4fc54cc58d07 | |
vecMag(P1, P2) = √((P2 .- P1) ⋅ (P2 .- P1)) | |
# ╔═╡ 00d26220-fe83-11ea-3cf6-492a6e1f3339 | |
proj(u, v) = (u ⋅ v) / (v ⋅ v) * v | |
# ╔═╡ b19ba752-3dc2-11eb-0b48-2bb17d047b06 | |
md" | |
$D_1(P)=||\overrightarrow{AP}-proj_{\overrightarrow{AB}}\overrightarrow{AP}||$ | |
$D_2(P)=||\overrightarrow{CP}-proj_{\overrightarrow{CD}}\overrightarrow{CP}||$ | |
" | |
# ╔═╡ 74c51212-fe81-11ea-2b20-45511a32be82 | |
D1(P) = vecMag((P .- A[1:2]) - proj((P .- A[1:2]), (B[1:2] .- A[1:2])), [0, 0]) | |
# ╔═╡ 453a9720-fe83-11ea-2ef2-fb2f40fb9394 | |
D2(P) = vecMag((P .- C[1:2]) - proj((P .- C[1:2]), (D[1:2] .- C[1:2])), [0, 0]) | |
# ╔═╡ fd028552-3dc3-11eb-2538-31025cd4a16c | |
md" | |
$P_{ab}(P)=\frac{P\circ\overrightarrow{AB}}{||\overrightarrow{AB}||\frac{D_2(P)}{D_1(P) + D_2(P)}+||\overrightarrow{CD}||\frac{D_1(P)}{D_1(P)+D_2(P)}} + A_{xy}$ | |
$P_{cd}(P)=\frac{P\circ\overrightarrow{CD}}{||\overrightarrow{AB}||\frac{D_2(P)}{D_1(P) + D_2(P)}+||\overrightarrow{CD}||\frac{D_1(P)}{D_1(P)+D_2(P)}} + C_{xy}$ | |
" | |
# ╔═╡ 246e2a50-fe80-11ea-1181-594649e2ce2e | |
Pab(P) = (P .* (B[1:2] .- A[1:2])) / ((vecMag(A[1:2], B[1:2]) * (D2(P) / (D1(P) + D2(P)))) + (vecMag(C[1:2], D[1:2]) * (D1(P) / (D1(P) + D2(P))))) + A[1:2] | |
# ╔═╡ 209fcaf0-fe85-11ea-0d9e-794a77c715a4 | |
Pcd(P) = (P .* (D[1:2] .- C[1:2])) / ((vecMag(A[1:2], B[1:2]) * (D2(P) / (D1(P) + D2(P)))) + (vecMag(C[1:2], D[1:2]) * (D1(P) / (D1(P) + D2(P))))) + C[1:2] | |
# ╔═╡ a015f1e0-3dc0-11eb-3cef-1ddcb8c1f656 | |
md" | |
$Z_{P_{ab}}(P)=(B_z-A_z)\frac{||\overrightarrow{AP_{ab}(P)}||}{||\overrightarrow{AB}||}+A_z$ | |
$Z_{P_{cd}}(P)=(D_z-C_z)\frac{||\overrightarrow{CP_{ab}(P)}||}{||\overrightarrow{CD}||}+C_z$ | |
" | |
# ╔═╡ 252d9b00-fe86-11ea-269c-959635d8db35 | |
ZPab(P) = ((B[3] - A[3]) / vecMag(A[1:2], B[1:2])) * vecMag(Pab(P), A[1:2]) + A[3] | |
# ╔═╡ 7eb90970-fe86-11ea-346f-2b9cf9f8ea22 | |
ZPcd(P) = ((D[3] - C[3]) / vecMag(C[1:2], D[1:2])) * vecMag(Pcd(P), C[1:2]) + C[3] | |
# ╔═╡ 5bc2b230-3dc5-11eb-3dd7-a51cce70eebc | |
md" | |
$Z(P)=\left(Z_{P_{ab}}(P)-Z_{P_{cd}}(P)\right)\frac{||\overrightarrow{P_{cd}(P)P}||}{||\overrightarrow{P_{ab}(P)P_{cd}(P)}||}+Z_{P_{cd}}(P)$ | |
" | |
# ╔═╡ ba242d60-fe85-11ea-3397-8da61bd274ca | |
Z(P) = ((ZPab(P) - ZPcd(P)) / vecMag(Pab(P), Pcd(P))) * vecMag(Pcd(P), P) + ZPcd(P) | |
# ╔═╡ de52a1d0-3dbe-11eb-3860-3b72f74e299d | |
Z(X, Y) = Z([X, Y]) | |
# ╔═╡ b4b47ce0-3dbe-11eb-230a-a7eaa71cc91c | |
x = min(P[:, 1]...):0.1:max(P[:, 1]...) | |
# ╔═╡ b775bfc0-3dbe-11eb-3ec1-453899565e99 | |
y = min(P[:, 2]...):0.1:max(P[:, 2]...) | |
# ╔═╡ 015cae7e-fe88-11ea-353a-a9907ace0173 | |
plot(x, y, Z, st=:surface) | |
# ╔═╡ 601d1460-fe87-11ea-1066-0d86847a1ad9 | |
begin | |
p = plot(x, y, Z, st=:contour) | |
plot!(p, P[:, 1], P[:, 2], st=:scatter) | |
end | |
# ╔═╡ 6562e540-3dbf-11eb-358e-ed02cee52f6d | |
P[:, 1:2] | |
# ╔═╡ Cell order: | |
# ╟─4e5ac200-fdff-11ea-3d80-d56549011cac | |
# ╠═b6cede50-fe79-11ea-10c2-13b9e4851b06 | |
# ╠═63395150-fdff-11ea-317a-956ff6431475 | |
# ╠═0ff87db0-fe7a-11ea-3afb-ddca5f27acab | |
# ╠═7e3e4710-fe79-11ea-3d4b-4fc54cc58d07 | |
# ╠═00d26220-fe83-11ea-3cf6-492a6e1f3339 | |
# ╟─b19ba752-3dc2-11eb-0b48-2bb17d047b06 | |
# ╠═74c51212-fe81-11ea-2b20-45511a32be82 | |
# ╠═453a9720-fe83-11ea-2ef2-fb2f40fb9394 | |
# ╟─fd028552-3dc3-11eb-2538-31025cd4a16c | |
# ╠═246e2a50-fe80-11ea-1181-594649e2ce2e | |
# ╠═209fcaf0-fe85-11ea-0d9e-794a77c715a4 | |
# ╟─a015f1e0-3dc0-11eb-3cef-1ddcb8c1f656 | |
# ╠═252d9b00-fe86-11ea-269c-959635d8db35 | |
# ╠═7eb90970-fe86-11ea-346f-2b9cf9f8ea22 | |
# ╟─5bc2b230-3dc5-11eb-3dd7-a51cce70eebc | |
# ╠═ba242d60-fe85-11ea-3397-8da61bd274ca | |
# ╠═de52a1d0-3dbe-11eb-3860-3b72f74e299d | |
# ╠═b4b47ce0-3dbe-11eb-230a-a7eaa71cc91c | |
# ╠═b775bfc0-3dbe-11eb-3ec1-453899565e99 | |
# ╠═015cae7e-fe88-11ea-353a-a9907ace0173 | |
# ╠═601d1460-fe87-11ea-1066-0d86847a1ad9 | |
# ╠═6562e540-3dbf-11eb-358e-ed02cee52f6d |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### A Pluto.jl notebook ### | |
# v0.12.17 | |
using Markdown | |
using InteractiveUtils | |
# ╔═╡ b6cede50-fe79-11ea-10c2-13b9e4851b06 | |
begin | |
using LinearAlgebra | |
using Plots | |
using PlutoUI | |
end | |
# ╔═╡ 4e5ac200-fdff-11ea-3d80-d56549011cac | |
md" | |
## Solving the TopologicalComputer N point interpolation problem in 3 dimensions | |
The TopologicalComputer N point interpolation problem in 3 dimensions involves the generation of a continuous surface across a region defined by 4 points. This problem becomes more difficult in higher dimensions, as the number of permutations of {0, 1} for each dimension grows with the function 2^d, whereas the number of points required to make a linear function is equal to d. | |
The solution I present is to use a similar method to the tracing above. Given 4 points, draw two lines between the points such that all 4 points have one line intersecting them. Then start from one end drawing traces between them such that a surface is drawn in the region bounded by the four points. Hello world | |
" | |
# ╔═╡ 63395150-fdff-11ea-317a-956ff6431475 | |
P = [ | |
0 0 1 # A | |
1 0 1 # B | |
0 1 1 # C | |
1 1 -1 # D | |
] | |
# ╔═╡ 0ff87db0-fe7a-11ea-3afb-ddca5f27acab | |
begin | |
A = P[1, :] | |
B = P[2, :] | |
C = P[3, :] | |
D = P[4, :] | |
end | |
# ╔═╡ 7e3e4710-fe79-11ea-3d4b-4fc54cc58d07 | |
vecMag(P1, P2) = √((P2 .- P1) ⋅ (P2 .- P1)) | |
# ╔═╡ 00d26220-fe83-11ea-3cf6-492a6e1f3339 | |
proj(u, v) = (u ⋅ v) / (v ⋅ v) * v | |
# ╔═╡ b19ba752-3dc2-11eb-0b48-2bb17d047b06 | |
md" | |
$D_1(P)=||\overrightarrow{AP}-proj_{\overrightarrow{AB}}\overrightarrow{AP}||$ | |
$D_2(P)=||\overrightarrow{CP}-proj_{\overrightarrow{CD}}\overrightarrow{CP}||$ | |
" | |
# ╔═╡ 74c51212-fe81-11ea-2b20-45511a32be82 | |
D1(P) = vecMag((P .- A[1:2]) - proj((P .- A[1:2]), (B[1:2] .- A[1:2])), [0, 0]) | |
# ╔═╡ 453a9720-fe83-11ea-2ef2-fb2f40fb9394 | |
D2(P) = vecMag((P .- C[1:2]) - proj((P .- C[1:2]), (D[1:2] .- C[1:2])), [0, 0]) | |
# ╔═╡ fd028552-3dc3-11eb-2538-31025cd4a16c | |
md" | |
$P_{ab}(P)=\frac{P\circ\overrightarrow{AB}}{||\overrightarrow{AB}||\frac{D_2(P)}{D_1(P) + D_2(P)}+||\overrightarrow{CD}||\frac{D_1(P)}{D_1(P)+D_2(P)}} + A_{xy}$ | |
$P_{cd}(P)=\frac{P\circ\overrightarrow{CD}}{||\overrightarrow{AB}||\frac{D_2(P)}{D_1(P) + D_2(P)}+||\overrightarrow{CD}||\frac{D_1(P)}{D_1(P)+D_2(P)}} + C_{xy}$ | |
" | |
# ╔═╡ 246e2a50-fe80-11ea-1181-594649e2ce2e | |
Pab(P) = (P .* (B[1:2] .- A[1:2])) / ((vecMag(A[1:2], B[1:2]) * (D2(P) / (D1(P) + D2(P)))) + (vecMag(C[1:2], D[1:2]) * (D1(P) / (D1(P) + D2(P))))) + A[1:2] | |
# ╔═╡ 209fcaf0-fe85-11ea-0d9e-794a77c715a4 | |
Pcd(P) = (P .* (D[1:2] .- C[1:2])) / ((vecMag(A[1:2], B[1:2]) * (D2(P) / (D1(P) + D2(P)))) + (vecMag(C[1:2], D[1:2]) * (D1(P) / (D1(P) + D2(P))))) + C[1:2] | |
# ╔═╡ a015f1e0-3dc0-11eb-3cef-1ddcb8c1f656 | |
md" | |
$Z_{P_{ab}}(P)=(B_z-A_z)\frac{||\overrightarrow{AP_{ab}(P)}||}{||\overrightarrow{AB}||}+A_z$ | |
$Z_{P_{cd}}(P)=(D_z-C_z)\frac{||\overrightarrow{CP_{ab}(P)}||}{||\overrightarrow{CD}||}+C_z$ | |
" | |
# ╔═╡ 252d9b00-fe86-11ea-269c-959635d8db35 | |
ZPab(P) = ((B[3] - A[3]) / vecMag(A[1:2], B[1:2])) * vecMag(Pab(P), A[1:2]) + A[3] | |
# ╔═╡ 7eb90970-fe86-11ea-346f-2b9cf9f8ea22 | |
ZPcd(P) = ((D[3] - C[3]) / vecMag(C[1:2], D[1:2])) * vecMag(Pcd(P), C[1:2]) + C[3] | |
# ╔═╡ 5bc2b230-3dc5-11eb-3dd7-a51cce70eebc | |
md" | |
$Z(P)=\left(Z_{P_{ab}}(P)-Z_{P_{cd}}(P)\right)\frac{||\overrightarrow{P_{cd}(P)P}||}{||\overrightarrow{P_{ab}(P)P_{cd}(P)}||}+Z_{P_{cd}}(P)$ | |
" | |
# ╔═╡ ba242d60-fe85-11ea-3397-8da61bd274ca | |
Z(P) = ((ZPab(P) - ZPcd(P)) / vecMag(Pab(P), Pcd(P))) * vecMag(Pcd(P), P) + ZPcd(P) | |
# ╔═╡ de52a1d0-3dbe-11eb-3860-3b72f74e299d | |
Z(X, Y) = Z([X, Y]) | |
# ╔═╡ b4b47ce0-3dbe-11eb-230a-a7eaa71cc91c | |
x = min(P[:, 1]...):0.1:max(P[:, 1]...) | |
# ╔═╡ b775bfc0-3dbe-11eb-3ec1-453899565e99 | |
y = min(P[:, 2]...):0.1:max(P[:, 2]...) | |
# ╔═╡ 015cae7e-fe88-11ea-353a-a9907ace0173 | |
plot(x, y, Z, st=:surface) | |
# ╔═╡ 601d1460-fe87-11ea-1066-0d86847a1ad9 | |
begin | |
p = plot(x, y, Z, st=:contour) | |
plot!(p, P[:, 1], P[:, 2], st=:scatter) | |
end | |
# ╔═╡ 6562e540-3dbf-11eb-358e-ed02cee52f6d | |
P[:, 1:2] | |
# ╔═╡ a6357100-424c-11eb-3910-010a00239136 | |
test = "true" | |
# ╔═╡ f33d9860-424c-11eb-1ab1-c7d54e959dce | |
println("hello world") | |
# ╔═╡ Cell order: | |
# ╟─4e5ac200-fdff-11ea-3d80-d56549011cac | |
# ╠═b6cede50-fe79-11ea-10c2-13b9e4851b06 | |
# ╠═63395150-fdff-11ea-317a-956ff6431475 | |
# ╠═0ff87db0-fe7a-11ea-3afb-ddca5f27acab | |
# ╠═7e3e4710-fe79-11ea-3d4b-4fc54cc58d07 | |
# ╠═00d26220-fe83-11ea-3cf6-492a6e1f3339 | |
# ╟─b19ba752-3dc2-11eb-0b48-2bb17d047b06 | |
# ╠═74c51212-fe81-11ea-2b20-45511a32be82 | |
# ╠═453a9720-fe83-11ea-2ef2-fb2f40fb9394 | |
# ╟─fd028552-3dc3-11eb-2538-31025cd4a16c | |
# ╠═246e2a50-fe80-11ea-1181-594649e2ce2e | |
# ╠═209fcaf0-fe85-11ea-0d9e-794a77c715a4 | |
# ╟─a015f1e0-3dc0-11eb-3cef-1ddcb8c1f656 | |
# ╠═252d9b00-fe86-11ea-269c-959635d8db35 | |
# ╠═7eb90970-fe86-11ea-346f-2b9cf9f8ea22 | |
# ╟─5bc2b230-3dc5-11eb-3dd7-a51cce70eebc | |
# ╠═ba242d60-fe85-11ea-3397-8da61bd274ca | |
# ╠═de52a1d0-3dbe-11eb-3860-3b72f74e299d | |
# ╠═b4b47ce0-3dbe-11eb-230a-a7eaa71cc91c | |
# ╠═b775bfc0-3dbe-11eb-3ec1-453899565e99 | |
# ╠═015cae7e-fe88-11ea-353a-a9907ace0173 | |
# ╠═601d1460-fe87-11ea-1066-0d86847a1ad9 | |
# ╠═6562e540-3dbf-11eb-358e-ed02cee52f6d | |
# ╠═a6357100-424c-11eb-3910-010a00239136 | |
# ╠═f33d9860-424c-11eb-1ab1-c7d54e959dce |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment