Created
October 12, 2022 07:43
-
-
Save jmarca/d5f0cd81f3cac30b8cdae03f969ae1d2 to your computer and use it in GitHub Desktop.
Bad optimum value with path cheapest arc strategy
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# Copyright 2010-2022 Google LLC | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# based on the sample vrp program in the OR Tools library, but hacked | |
# by James Marca to mimic the Java program reported on the forum post | |
# [START program] | |
"""Capacited Vehicles Routing Problem (CVRP).""" | |
# [START import] | |
from ortools.constraint_solver import routing_enums_pb2 | |
from ortools.constraint_solver import pywrapcp | |
# [END import] | |
# [START data_model] | |
def create_data_model(): | |
"""Stores the data for the problem.""" | |
data = {} | |
data["distance_matrix"] = [] | |
# [START demands_capacities] | |
data["penalties"] = [1, 1, 100, 5, 5] | |
data["demands"] = [0, 0, 50, 30, 30] | |
data["vehicle_capacities"] = [75] | |
# [END demands_capacities] | |
data["num_vehicles"] = 1 | |
data["startdepot"] = [0] | |
data["enddepot"] = [1] | |
return data | |
# [END data_model] | |
# [START solution_printer] | |
def print_solution(data, manager, routing, solution): | |
"""Prints solution on console.""" | |
print(f"Objective: {solution.ObjectiveValue()}") | |
total_distance = 0 | |
total_load = 0 | |
for vehicle_id in range(data["num_vehicles"]): | |
index = routing.Start(vehicle_id) | |
plan_output = "Route for vehicle {}:\n".format(vehicle_id) | |
route_distance = 0 | |
route_load = 0 | |
while not routing.IsEnd(index): | |
node_index = manager.IndexToNode(index) | |
route_load += data["demands"][node_index] | |
plan_output += " {0} Load({1}) -> ".format(node_index, route_load) | |
previous_index = index | |
index = solution.Value(routing.NextVar(index)) | |
route_distance += routing.GetArcCostForVehicle( | |
previous_index, index, vehicle_id | |
) | |
plan_output += " {0} Load({1})\n".format(manager.IndexToNode(index), route_load) | |
plan_output += "Distance of the route: {}m\n".format(route_distance) | |
plan_output += "Load of the route: {}\n".format(route_load) | |
print(plan_output) | |
total_distance += route_distance | |
total_load += route_load | |
print("Total distance of all routes: {}m".format(total_distance)) | |
print("Total load of all routes: {}".format(total_load)) | |
# [END solution_printer] | |
def main(): | |
"""Solve the CVRP problem.""" | |
# Instantiate the data problem. | |
# [START data] | |
data = create_data_model() | |
# [END data] | |
# Create the routing index manager. | |
# [START index_manager] | |
manager = pywrapcp.RoutingIndexManager( | |
5, data["num_vehicles"], data["startdepot"], data["enddepot"] | |
) | |
# [END index_manager] | |
# Create Routing Model. | |
# [START routing_model] | |
routing = pywrapcp.RoutingModel(manager) | |
# [END routing_model] | |
# Create and register a transit callback. | |
# [START transit_callback] | |
def distance_callback(from_index, to_index): | |
"""Returns the distance between the two nodes.""" | |
return 0 | |
transit_callback_index = routing.RegisterTransitCallback(distance_callback) | |
# [END transit_callback] | |
# Define cost of each arc. | |
# [START arc_cost] | |
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) | |
# [END arc_cost] | |
# Add Capacity constraint. | |
# [START capacity_constraint] | |
def demand_callback(from_index): | |
"""Returns the demand of the node.""" | |
# Convert from routing variable Index to demands NodeIndex. | |
from_node = manager.IndexToNode(from_index) | |
return data["demands"][from_node] | |
demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback) | |
routing.AddDimensionWithVehicleCapacity( | |
demand_callback_index, | |
0, # null capacity slack | |
data["vehicle_capacities"], # vehicle maximum capacities | |
True, # start cumul to zero | |
"Capacity", | |
) | |
# [END capacity_constraint] | |
for node in range(2, len(data["demands"])): | |
routing.AddDisjunction([manager.NodeToIndex(node)], data["penalties"][node]) | |
# Setting first solution heuristic. | |
# [START parameters] | |
search_parameters = pywrapcp.DefaultRoutingSearchParameters() | |
search_parameters.log_search = True | |
search_parameters.first_solution_strategy = ( | |
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC | |
# routing_enums_pb2.FirstSolutionStrategy.PATH_MOST_CONSTRAINED_ARC | |
# routing_enums_pb2.FirstSolutionStrategy.EVALUATOR_STRATEGY | |
# routing_enums_pb2.FirstSolutionStrategy.SAVINGS | |
# routing_enums_pb2.FirstSolutionStrategy.SWEEP | |
# routing_enums_pb2.FirstSolutionStrategy.CHRISTOFIDES | |
# routing_enums_pb2.FirstSolutionStrategy.ALL_UNPERFORMED | |
# routing_enums_pb2.FirstSolutionStrategy.BEST_INSERTION | |
# routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION | |
# routing_enums_pb2.FirstSolutionStrategy.SEQUENTIAL_CHEAPEST_INSERTION | |
# routing_enums_pb2.FirstSolutionStrategy.LOCAL_CHEAPEST_INSERTION | |
# routing_enums_pb2.FirstSolutionStrategy.GLOBAL_CHEAPEST_ARC | |
# routing_enums_pb2.FirstSolutionStrategy.LOCAL_CHEAPEST_ARC | |
# routing_enums_pb2.FirstSolutionStrategy.FIRST_UNBOUND_MIN_VALUE | |
) | |
search_parameters.local_search_metaheuristic = ( | |
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH | |
) | |
search_parameters.time_limit.FromSeconds(10) | |
# [END parameters] | |
# Solve the problem. | |
# [START solve] | |
solution = routing.SolveWithParameters(search_parameters) | |
# [END solve] | |
# Print solution on console. | |
# [START print_solution] | |
if solution: | |
print_solution(data, manager, routing, solution) | |
else: | |
print("no solution") | |
# [END print_solution] | |
if __name__ == "__main__": | |
main() | |
# [END program] |
On Wed, Oct 12, 2022 at 01:04:40AM -0700, bb-vh-suraj wrote:
Hi @jmarca , thanks for the lookout and confirming the problem. So,what should i do now, sir?
Will or tools mods log it as an issue? or Should i just change my first strategy and move on?
Change your strategy and move on is my advice.
…
--
Reply to this email directly or view it on GitHub:
https://gist.github.com/d5f0cd81f3cac30b8cdae03f969ae1d2#gistcomment-4332533
You are receiving this because you were mentioned.
Message ID: ***@***.***>
--
James E. Marca
Activimetrics LLC
Got it. Thanks for the advice.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @jmarca , thanks for the lookout and confirming the problem. So,what should i do now, sir?
Will or tools mods log it as an issue? or Should i just change my first strategy and move on?