Skip to content

Instantly share code, notes, and snippets.

@dacr
Last active September 1, 2024 10:15
Show Gist options
  • Save dacr/8f9e4501c98ce80e539343ef7f630f03 to your computer and use it in GitHub Desktop.
Save dacr/8f9e4501c98ce80e539343ef7f630f03 to your computer and use it in GitHub Desktop.
image classification try / published by https://github.com/dacr/code-examples-manager #32c4a82b-8a40-480a-bad9-5390bceed3dd/c49b6ec266249eb67d7c6866045612a1304a06cb
// summary : image classification try
// keywords : djl, machine-learning, tutorial, detection, ai, @testable
// publish : gist
// authors : David Crosson
// license : Apache NON-AI License Version 2.0 (https://raw.githubusercontent.com/non-ai-licenses/non-ai-licenses/main/NON-AI-APACHE2)
// id : 32c4a82b-8a40-480a-bad9-5390bceed3dd
// created-on : 2022-03-09T20:17:01+01:00
// managed-by : https://github.com/dacr/code-examples-manager
// run-with : scala-cli $file
// ---------------------
//> using scala "3.4.2"
//> using dep "org.slf4j:slf4j-api:2.0.13"
//> using dep "org.slf4j:slf4j-simple:2.0.13"
//> using dep "net.java.dev.jna:jna:5.14.0"
//> using dep "ai.djl:api:0.29.0"
//> using dep "ai.djl:basicdataset:0.29.0"
//> using dep "ai.djl:model-zoo:0.29.0"
//> using dep "ai.djl.huggingface:tokenizers:0.29.0"
//> using dep "ai.djl.mxnet:mxnet-engine:0.29.0"
//> using dep "ai.djl.mxnet:mxnet-model-zoo:0.29.0"
//> using dep "ai.djl.pytorch:pytorch-engine:0.29.0"
//> using dep "ai.djl.pytorch:pytorch-model-zoo:0.29.0"
//> using dep "ai.djl.tensorflow:tensorflow-engine:0.29.0"
//> using dep "ai.djl.tensorflow:tensorflow-model-zoo:0.29.0"
//> using dep "ai.djl.onnxruntime:onnxruntime-engine:0.29.0"
// ---------------------
//System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "debug")
import ai.djl.Application
import ai.djl.engine.Engine
import ai.djl.modality.Classifications
import ai.djl.modality.Classifications.Classification
import ai.djl.modality.cv.Image
import ai.djl.modality.cv.ImageFactory
import ai.djl.repository.zoo.Criteria
import ai.djl.repository.zoo.ModelZoo
import ai.djl.repository.zoo.ZooModel
import ai.djl.training.util.ProgressBar
import java.nio.file.Files
import java.nio.file.Path
import java.nio.file.Paths
import scala.jdk.CollectionConverters.*
// ----------------------------------------------------------------------------------------------
val criteria =
Criteria.builder
.optApplication(Application.CV.IMAGE_CLASSIFICATION)
.setTypes(classOf[Image], classOf[Classifications])
// ------------------------------------
//.optFilter("flavor","v1")
//.optFilter("dataset","cifar10")
// ------------------------------------
//.optFilter("flavor","v3_large")
//.optFilter("dataset","imagenet")
// ------------------------------------
.optFilter("flavor","v1d")
.optFilter("dataset","imagenet")
.optProgress(new ProgressBar)
.build
val model = ModelZoo.loadModel(criteria)
val predictor = model.newPredictor()
val inputImageURL = "https://mapland.fr/data/ai/images-samples/example-001.jpg"
val img = ImageFactory.getInstance().fromUrl(inputImageURL)
val found: Classifications = predictor.predict(img)
found.items()
.asScala
.toList
.asInstanceOf[List[Classification]]
.filter(_.getProbability > 0.5d)
.foreach{cl =>
println(cl.getClassName+" "+cl.getProbability)
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment