Skip to content

Instantly share code, notes, and snippets.

@dacr
Last active May 25, 2024 10:19
Show Gist options
  • Save dacr/f657bb159441a0f8447571f61f8a958e to your computer and use it in GitHub Desktop.
Save dacr/f657bb159441a0f8447571f61f8a958e to your computer and use it in GitHub Desktop.
sentiment analysis using DJL / published by https://github.com/dacr/code-examples-manager #65caa624-232d-483d-83d2-0d4ea0067540/4d079d819834510a709ae96a96f636d28e6b9df7
// summary : sentiment analysis using DJL
// keywords : djl, machine-learning, tutorial, sentiment, ai, @testable
// publish : gist
// authors : David Crosson
// license : Apache NON-AI License Version 2.0 (https://raw.githubusercontent.com/non-ai-licenses/non-ai-licenses/main/NON-AI-APACHE2)
// id : 65caa624-232d-483d-83d2-0d4ea0067540
// created-on : 2024-01-28T16:16:23+01:00
// managed-by : https://github.com/dacr/code-examples-manager
// run-with : scala-cli $file
// ---------------------
//> using scala "3.4.2"
//> using dep "org.slf4j:slf4j-api:2.0.13"
//> using dep "org.slf4j:slf4j-simple:2.0.13"
//> using dep "net.java.dev.jna:jna:5.14.0"
//> using dep "ai.djl:api:0.28.0"
//> using dep "ai.djl:basicdataset:0.28.0"
//> using dep "ai.djl:model-zoo:0.28.0"
//> using dep "ai.djl.huggingface:tokenizers:0.28.0"
//> using dep "ai.djl.mxnet:mxnet-engine:0.28.0"
//> using dep "ai.djl.mxnet:mxnet-model-zoo:0.28.0"
//> using dep "ai.djl.pytorch:pytorch-engine:0.28.0"
//> using dep "ai.djl.pytorch:pytorch-model-zoo:0.28.0"
//> using dep "ai.djl.tensorflow:tensorflow-engine:0.28.0"
//> using dep "ai.djl.tensorflow:tensorflow-model-zoo:0.28.0"
////> using dep "ai.djl.paddlepaddle:paddlepaddle-engine:0.28.0"
////> using dep "ai.djl.paddlepaddle:paddlepaddle-model-zoo:0.28.0"
//> using dep "ai.djl.onnxruntime:onnxruntime-engine:0.28.0"
// ---------------------
System.setProperty("org.slf4j.simpleLogger.defaultLogLevel", "error")
import ai.djl.Application
import ai.djl.engine.Engine
import ai.djl.modality.Classifications
import ai.djl.repository.zoo.Criteria
import ai.djl.training.util.ProgressBar
import ai.djl.huggingface.translator.{TextClassificationTranslatorFactory, TextEmbeddingTranslatorFactory}
import scala.io.AnsiColor.{BLUE, BOLD, CYAN, GREEN, MAGENTA, RED, RESET, UNDERLINED, YELLOW}
val criteria =
Criteria.builder
.setTypes(classOf[String], classOf[Classifications])
.optModelUrls("djl://ai.djl.huggingface.pytorch/distilbert-base-uncased-finetuned-sst-2-english")
.optEngine("PyTorch")
.optTranslatorFactory(new TextClassificationTranslatorFactory)
.optProgress(new ProgressBar)
.build
val model = criteria.loadModel()
val predictor = model.newPredictor()
def analyze(text: String): Unit = {
println(s"${GREEN}====================$text====================${RESET}")
val result = predictor.predict(text)
println(result)
}
analyze("Hello world")
analyze("I like you")
analyze("This an awful shirt")
analyze("You are a fucking bastard")
analyze("This is not very good for you but it can help")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment