Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Training TensorFlow Agents PPO on dm_control environments.
import argparse
import os
import agents
import gym
import gym.spaces
import numpy as np
import tensorflow as tf
from dm_control import suite # Must be imported after TensorFlow.
class DeepMindWrapper(object):
"""Wraps a DM Control environment into a Gym interface."""
metadata = {'render.modes': ['rgb_array']}
reward_range = (-np.inf, np.inf)
def __init__(self, env, render_size=(64, 64), camera_id=0):
self._env = env
self._render_size = render_size
self._camera_id = camera_id
def __getattr__(self, name):
return getattr(self._env, name)
def observation_space(self):
components = {}
for key, value in self._env.observation_spec().items():
components[key] = gym.spaces.Box(-np.inf, np.inf, value.shape)
return gym.spaces.Dict(components)
def action_space(self):
action_spec = self._env.action_spec()
return gym.spaces.Box(action_spec.minimum, action_spec.maximum)
def step(self, action):
time_step = self._env.step(action)
obs = dict(time_step.observation)
reward = time_step.reward or 0
done = time_step.last()
info = {'discount':}
return obs, reward, done, info
def reset(self):
time_step = self._env.reset()
return dict(time_step.observation)
def render(self, mode='rgb_array', *args, **kwargs):
if mode != 'rgb_array':
raise ValueError("Only render mode 'rgb_array' is supported.")
del args # Unused.
del kwargs # Unused.
return self._env.physics.render(
*self._render_size, camera_id=self._camera_id)
class SelectKeysWrapper(object):
"""Select observations from a dict space and concatenate them."""
def __init__(self, env, keys):
self._env = env
self._keys = keys
def __getattr__(self, name):
return getattr(self._env, name)
def observation_space(self):
components = self._env.observation_space.spaces
components = [components[key] for key in self._keys]
low = np.concatenate([component.low for component in components], 0)
high = np.concatenate([component.high for component in components], 0)
return gym.spaces.Box(low, high)
def step(self, action):
obs, reward, done, info = self._env.step(action)
obs = self._select_keys(obs)
return obs, reward, done, info
def reset(self):
obs = self._env.reset()
obs = self._select_keys(obs)
return obs
def _select_keys(self, obs):
return np.concatenate([obs[key] for key in self._keys], 0)
def create_env():
env = suite.load('reacher', 'easy')
env = DeepMindWrapper(env)
env = SelectKeysWrapper(env, ['position', 'velocity', 'to_target'])
return env
def reacher():
env = create_env
max_length = 1000
steps = 1e7 # 10M
discount = 0.985
update_every = 60
return locals()
def main(args):
logdir = args.logdir and os.path.expanduser(args.logdir)
if args.mode == 'train':
# Try to resume training from log directory.
config = agents.scripts.utility.load_config(args.logdir)
except IOError:
# If no config was found in the logdir, start new training run.
config =[args.config]())
config = agents.scripts.utility.save_config(config, logdir)
for score in agents.scripts.train.train(config, env_processes=True):'Score {}.'.format(score))
if args.mode == 'render':
logdir=args.logdir, outdir=args.logdir, num_agents=1, num_episodes=5,
checkpoint=None, env_processes=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', choices=['train', 'render'], default='train')
parser.add_argument('--logdir', default='~/logdir/varagent')
args = parser.parse_args()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.