Applicative-based Sudoku solver
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE TypeOperators #-} | |
{-# LANGUAGE GeneralizedNewtypeDeriving #-} | |
import Control.Applicative | |
import Data.Char | |
import Data.List (intersperse) | |
import Data.Monoid hiding (All, Any) | |
import Data.Foldable hiding (all, any) | |
import Prelude hiding (all, any) | |
-- TODO | |
-- [ ] Parametrize by board size | |
-- Ex 1 | |
data Triple a = Tr a a a | |
deriving (Show, Eq) | |
instance Functor Triple where | |
fmap f (Tr a b c) = Tr (f a) (f b) (f c) | |
instance Foldable Triple where | |
foldMap f (Tr a b c) = mconcat [f a, f b, f c] | |
instance Applicative Triple where | |
pure a = Tr a a a | |
(Tr f g h) <*> (Tr a b c) = Tr (f a) (g b) (h c) | |
instance Traversable Triple where | |
traverse f (Tr a b c) = pure Tr <*> f a <*> f b <*> f c | |
-- Writing fmap in terms of pure and (<*>) | |
fmap' :: Applicative f => (a -> b) -> f a -> f b | |
fmap' f x = (pure f) <*> x | |
newtype I x = I { unI :: x } | |
deriving (Show, Eq) | |
-- Ex 2 | |
newtype (:.) f g x = Comp { comp :: f (g x) } | |
deriving (Show, Eq) | |
instance (Functor f, Functor g) => Functor (f :. g) where | |
fmap f (Comp x) = Comp $ fmap (fmap f) x | |
instance (Applicative f, Applicative g) => Applicative (f :. g) where | |
pure = Comp . pure . pure | |
Comp f <*> Comp x = Comp $ (fmap (<*>) f) <*> x | |
instance (Foldable f, Foldable g) => Foldable (f :. g) where | |
foldMap f (Comp x) = foldMap (foldMap f) x | |
instance (Traversable f, Traversable g) => Traversable (f :. g) where | |
traverse f (Comp x) = pure Comp <*> traverse (traverse f) x | |
type Zone = Triple :. Triple | |
type Board = Zone :. Zone | |
rows :: Board a -> Board a | |
rows = id | |
cols :: Board a -> Board a | |
cols = Comp . sequenceA . comp | |
-- Q Is there a cleaner way of doing this? | |
boxs :: Board a -> Board a | |
boxs = Comp . Comp . fmap (fmap Comp) . fmap sequenceA . fmap (fmap comp) . comp . comp | |
-- Ex 3 | |
newtype Parse x = Parser { parse :: String -> [(x, String)] } | |
deriving Monoid | |
instance Functor Parse where | |
fmap f p = Parser $ \s -> [(f x, s') | (x, s') <- parse p s] | |
instance Applicative Parse where | |
pure x = Parser $ \s -> [(x, s)] | |
f <*> x = Parser $ \s -> | |
[(f' x', s'') | (f', s') <- parse f s, (x', s'') <- parse x s'] | |
instance Alternative Parse where | |
empty = mempty | |
(<|>) = mappend | |
ch :: (Char -> Bool) -> Parse Char | |
ch p = Parser f | |
where | |
f [] = [] | |
f (s:xs) | p s = [(s, xs)] | |
f _ | otherwise = [] | |
-- Ex 4 | |
whitespace :: Parse Char | |
whitespace = ch (== ' ') | |
digit :: Parse Char | |
digit = ch $ flip elem $ ['0'..'9'] | |
then' :: Parse Char -> Parse String -> Parse String | |
then' p q = pure (:) <*> p <*> q | |
rep :: Parse Char -> Parse String | |
rep p = (then' p (rep p)) <|> pure "" | |
square :: Parse Int | |
square = pure digitToInt <*> (pure (flip const) <*> rep whitespace <*> digit) | |
-- Q Wow! How come that this works?! | |
board :: Parse (Board Int) | |
board = traverse (const square) (pure 0 :: Board Int) | |
-- Q How to use newline in string? | |
b :: String | |
b = mconcat $ intersperse " " | |
[ "0 0 0 0 0 0 6 8 0" | |
, "0 0 0 0 7 3 0 0 9" | |
, "3 0 9 0 0 0 0 4 5" | |
, "4 9 0 0 0 0 0 0 0" | |
, "8 0 3 0 5 0 9 0 2" | |
, "0 0 0 0 0 0 0 3 6" | |
, "9 6 0 0 0 0 3 0 8" | |
, "7 0 0 6 8 0 0 0 0" | |
, "0 2 8 0 0 0 0 0 0"] | |
-- Ex 5 | |
newtype K a x = K { unK :: a } | |
deriving Show | |
instance Monoid a => Functor (K a) where | |
-- Q Why doesn't this work `fmap _ = id`? | |
fmap _ (K a) = K a | |
instance Monoid a => Applicative (K a) where | |
pure _ = K mempty | |
(K a) <*> (K b) = K $ mappend a b | |
crush :: (Traversable f, Monoid b) => (a -> b) -> f a -> b | |
crush f t = unK $ traverse (K . f) t | |
newtype Any = Any { unAny :: Bool } deriving Show | |
newtype All = All { unAll :: Bool } deriving Show | |
instance Monoid Any where | |
mempty = Any False | |
mappend (Any x) (Any y) = Any $ x || y | |
instance Monoid All where | |
mempty = All True | |
mappend (All x) (All y) = All $ x && y | |
all :: Traversable t => (a -> Bool) -> t a -> Bool | |
all p = unAll . crush (All . p) | |
any :: Traversable t => (a -> Bool) -> t a -> Bool | |
any p = unAny . crush (Any . p) | |
duplicates :: (Traversable f, Eq a) => f a -> [a] | |
duplicates = fmap fst . filter ((> 1) . snd) . foldr count [] | |
count :: Eq a => a -> [(a, Int)] -> [(a, Int)] | |
count x [] = [(x, 1)] | |
count x ((x', c):xs) | x == x' = (x', c + 1):xs | |
| otherwise = (x', c):(count x xs) | |
complete :: Board Int -> Bool | |
complete = all (flip elem [1..9]) | |
ok :: Board Int -> Bool | |
ok t = all (\f -> null $ duplicates $ f t) [rows, cols, boxs] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
fmap _ = K . unK
would work. The difference betweenk . unK
andid
is thatk . unK
has typeK a b -> K a c
, so it lets the phantom type change.id
has typea -> a
, so it won't let the phantom type change. Similarly, had you wrotefmap _ a = a
, it would have failed for the same reason asid
.