Skip to content

Instantly share code, notes, and snippets.

@daradecic
Created January 25, 2021 05:54
Show Gist options
  • Save daradecic/92635d706847396c7eab8d0b84cf9837 to your computer and use it in GitHub Desktop.
Save daradecic/92635d706847396c7eab8d0b84cf9837 to your computer and use it in GitHub Desktop.
003_m1_deep_learning
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0
# ONLY ON THE MAC
# from tensorflow.python.compiler.mlcompute import mlcompute
# mlcompute.set_mlc_device(device_name='gpu')
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
history = model.fit(
train_images,
train_labels,
epochs=10,
validation_data=(test_images, test_labels)
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment