View README.rst

Elasticsearch CLI

Experimental CLI interface for the helpers in the `python library`_.

Main purpose is to expose the bulk functionality to enable rapid loading of data into an elasticsearch cluster. Combined with the scan command it can also be used to reindex data from elasticsearch into a different index or cluster.

View schools.stan
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
View python-pil-image-sprite.py
#!/usr/bin/python
# This work is licensed under the Creative Commons Attribution 3.0 United
# States License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative
# Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
# from http://oranlooney.com/make-css-sprites-python-image-library/
# Orignial Author Oran Looney <olooney@gmail.com>
View install-ros-kinetic_osx.sh
#!/bin/bash
ROS_DISTRO=${ROS_DISTRO:-kinetic}
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew update
brew install cmake
View SparkSQLJira.scala
package com.databricks.spark.jira
import scala.io.Source
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.sources.{TableScan, BaseRelation, RelationProvider}
View gist:12f58e684768529b72d7d89f0440ea5e
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.hadoop.conf.Configuration
case class S3File(path: String, isDir: Boolean, size: Long) {
def children = listFiles(path)
}
def listFiles(path: String): Seq[S3File] = {
val fs = FileSystem.get(new java.net.URI(path), new Configuration())
fs.listStatus(new Path(path)).map(s => S3File(s.getPath.toString, s.isDir, s.getLen))
View a3c.py
class AC_Network():
def __init__(self,s_size,a_size,scope,trainer):
with tf.variable_scope(scope):
#Input and visual encoding layers
self.inputs = tf.placeholder(shape=[None,s_size],dtype=tf.float32)
self.imageIn = tf.reshape(self.inputs,shape=[-1,84,84,1])
self.conv1 = slim.conv2d(activation_fn=tf.nn.elu,
inputs=self.imageIn,num_outputs=16,
kernel_size=[8,8],stride=[4,4],padding='VALID')
self.conv2 = slim.conv2d(activation_fn=tf.nn.elu,
View Deep Layer Visualization.ipynb
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View Advanced-FP-with-Scala.md

Advanced Functional Programming with Scala - Notes

Copyright © 2017 Fantasyland Institute of Learning. All rights reserved.

1. Mastering Functions

A function is a mapping from one set, called a domain, to another set, called the codomain. A function associates every element in the domain with exactly one element in the codomain. In Scala, both domain and codomain are types.

val square : Int => Int = x => x * x
View math_functions.scala
def sigmoid(x: Double) = 1.0 / (1.0 + math.exp(-x))
def f1measure(TP: Double, TN: Double, FP: Double, FN: Double, alpha: Double = 1) = {
val P = precision(TP, FP)
val R = recall(TP, FN)
(2.0 * P * R) / (P + R)
}
def precision(TP: Double, FP: Double) = TP / (FP + TP)