類神經網路在近幾年已取得巨大的突破,從最開始的Perceptron一直演化到AlexNet、VGG,精確度一直不斷的往上提升,但伴隨著的是模型複雜化,過度複雜的模型使得運算量極大以至於不能在低階產品(如手機上)運行,MobileNet的發明就是為了解決這想法而產生的,文中和許多當前有名的框架互相比較(Inception V3、VGG),速度真的提升許多,雖然精確度有稍許下降,但也都控制在可以接受的範圍內。
文中最核心的思想就是把傳統的卷積過程簡化成計算量更少的過程,算式並沒有完全等效,但有趨近於等效的功用,主要是把過程分成Depthwise convolution 和 pointwise convolution,文中用公式來舉例說明

