Skip to content

Instantly share code, notes, and snippets.

@dashesy
Created May 27, 2013 18:17
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save dashesy/5658392 to your computer and use it in GitHub Desktop.
Save dashesy/5658392 to your computer and use it in GitHub Desktop.
KernelPCA with callable kernel
"""Kernel Principal Components Analysis"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# License: BSD Style.
import numpy as np
from scipy import linalg
from ..utils.arpack import eigsh
from ..base import BaseEstimator, TransformerMixin
from ..preprocessing import KernelCenterer
from ..metrics.pairwise import pairwise_kernels
class KernelPCA(BaseEstimator, TransformerMixin):
"""Kernel Principal component analysis (KPCA)
Non-linear dimensionality reduction through the use of kernels.
Parameters
----------
n_components: int or None
Number of components. If None, all non-zero components are kept.
kernel: "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed" | a callable.
Kernel.
Default: "linear"
degree : int, optional
Degree for poly, rbf and sigmoid kernels.
Default: 3.
gamma : float, optional
Kernel coefficient for rbf and poly kernels.
Default: 1/n_features.
coef0 : float, optional
Independent term in poly and sigmoid kernels.
alpha: int
Hyperparameter of the ridge regression that learns the
inverse transform (when fit_inverse_transform=True).
Default: 1.0
fit_inverse_transform: bool
Learn the inverse transform for non-precomputed kernels.
(i.e. learn to find the pre-image of a point)
Default: False
eigen_solver: string ['auto'|'dense'|'arpack']
Select eigensolver to use. If n_components is much less than
the number of training samples, arpack may be more efficient
than the dense eigensolver.
tol: float
convergence tolerance for arpack.
Default: 0 (optimal value will be chosen by arpack)
max_iter : int
maximum number of iterations for arpack
Default: None (optimal value will be chosen by arpack)
Attributes
----------
`lambdas_`, `alphas_`:
Eigenvalues and eigenvectors of the centered kernel matrix
`dual_coef_`:
Inverse transform matrix
`X_transformed_fit_`:
Projection of the fitted data on the kernel principal components
References
----------
Kernel PCA was intoduced in:
Bernhard Schoelkopf, Alexander J. Smola,
and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods,
MIT Press, Cambridge, MA, USA 327-352.
"""
def __init__(self, n_components=None, kernel="linear", gamma=None, degree=3,
coef0=1, alpha=1.0, fit_inverse_transform=False,
eigen_solver='auto', tol=0, max_iter=None):
if fit_inverse_transform and kernel == 'precomputed':
raise ValueError(
"Cannot fit_inverse_transform with a precomputed kernel.")
self.n_components = n_components
if isinstance(kernel, basestring):
self.kernel = kernel.lower()
else:
self.kernel = kernel
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.alpha = alpha
self.fit_inverse_transform = fit_inverse_transform
self.eigen_solver = eigen_solver
self.tol = tol
self.max_iter = max_iter
self._centerer = KernelCenterer()
@property
def _pairwise(self):
return self.kernel == "precomputed" or hasattr(self.kernel, "__call__")
def _get_kernel(self, X, Y=None):
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
try:
return pairwise_kernels(X, Y, metric=self.kernel,
filter_params=True, **params)
except AttributeError:
raise ValueError("%s is not a valid kernel. Valid kernels are: "
"rbf, poly, sigmoid, linear and precomputed."
% self.kernel)
def _fit_transform(self, K):
""" Fit's using kernel K"""
# center kernel
K = self._centerer.fit_transform(K)
if self.n_components is None:
n_components = K.shape[0]
else:
n_components = min(K.shape[0], self.n_components)
# compute eigenvectors
if self.eigen_solver == 'auto':
if K.shape[0] > 200 and n_components < 10:
eigen_solver = 'arpack'
else:
eigen_solver = 'dense'
else:
eigen_solver = self.eigen_solver
if eigen_solver == 'dense':
self.lambdas_, self.alphas_ = linalg.eigh(
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
elif eigen_solver == 'arpack':
self.lambdas_, self.alphas_ = eigsh(K, n_components,
which="LA",
tol=self.tol,
maxiter=self.max_iter)
# sort eignenvectors in descending order
indices = self.lambdas_.argsort()[::-1]
self.lambdas_ = self.lambdas_[indices]
self.alphas_ = self.alphas_[:, indices]
# remove eigenvectors with a zero eigenvalue
self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
self.lambdas_ = self.lambdas_[self.lambdas_ > 0]
return K
def _fit_inverse_transform(self, X_transformed, X):
if hasattr(X, "tocsr"):
raise NotImplementedError("Inverse transform not implemented for "
"sparse matrices!")
n_samples = X_transformed.shape[0]
K = self._get_kernel(X_transformed)
K.flat[::n_samples + 1] += self.alpha
self.dual_coef_ = linalg.solve(K, X, sym_pos=True, overwrite_a=True)
self.X_transformed_fit_ = X_transformed
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
K = self._get_kernel(X)
self._fit_transform(K)
if self.fit_inverse_transform:
sqrt_lambdas = np.diag(np.sqrt(self.lambdas_))
X_transformed = np.dot(self.alphas_, sqrt_lambdas)
self._fit_inverse_transform(X_transformed, X)
self.X_fit_ = X
return self
def fit_transform(self, X, y=None, **params):
"""Fit the model from data in X and transform X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new: array-like, shape (n_samples, n_components)
"""
self.fit(X, **params)
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
if self.fit_inverse_transform:
self._fit_inverse_transform(X_transformed, X)
return X_transformed
def transform(self, X):
"""Transform X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Returns
-------
X_new: array-like, shape (n_samples, n_components)
"""
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
return np.dot(K, self.alphas_ / np.sqrt(self.lambdas_))
def inverse_transform(self, X):
"""Transform X back to original space.
Parameters
----------
X: array-like, shape (n_samples, n_components)
Returns
-------
X_new: array-like, shape (n_samples, n_features)
References
----------
"Learning to Find Pre-Images", G BakIr et al, 2004.
"""
if not self.fit_inverse_transform:
raise ValueError("Inverse transform was not fitted!")
K = self._get_kernel(X, self.X_transformed_fit_)
return np.dot(K, self.dual_coef_)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment