Maxout unit in PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch as T | |
class Maxout(T.nn.Module): | |
"""Class Maxout implements maxout unit introduced in paper by Goodfellow et al, 2013. | |
:param in_feature: Size of each input sample. | |
:param out_feature: Size of each output sample. | |
:param n_channels: The number of linear pieces used to make each maxout unit. | |
:param bias: If set to False, the layer will not learn an additive bias. | |
""" | |
def __init__(self, in_features, out_features, n_channels, bias=True): | |
super().__init__() | |
self.in_features = in_features | |
self.out_features = out_features | |
self.n_channels = n_channels | |
self.weight = T.nn.Parameter(T.Tensor(n_channels * out_features, in_features)) | |
if bias: | |
self.bias = T.nn.Parameter(T.Tensor(n_channels * out_features)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
def forward(self, input): | |
a = T.nn.functional.linear(input, self.weight, self.bias) | |
b = T.nn.functional.max_pool1d(a.unsqueeze(-3), kernel_size=self.n_channels) | |
return b.squeeze() | |
def reset_parameters(self): | |
irange = 0.005 | |
T.nn.init.uniform_(self.weight, -irange, irange) | |
if self.bias is not None: | |
T.nn.init.uniform_(self.bias, -irange, irange) | |
def extra_repr(self): | |
return (f'in_features={self.in_features}, ' | |
f'out_features={self.out_features}, ' | |
f'n_channels={self.n_channels}, ' | |
f'bias={self.bias is not None}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment