Skip to content

Instantly share code, notes, and snippets.

@databento-bot
Created February 28, 2024 09:20
Show Gist options
  • Save databento-bot/f99a3adc08233b1bfe3f3c1b8aee8913 to your computer and use it in GitHub Desktop.
Save databento-bot/f99a3adc08233b1bfe3f3c1b8aee8913 to your computer and use it in GitHub Desktop.
Example of getting largest moves in US stocks during extended hours with Databento
import datetime
import databento as db
import pandas as pd
def get_df_move(date: str = '2023-06-06'):
end_dt = datetime.datetime.strptime(date+'T16:00', '%Y-%m-%dT%H:%M')
start_dt = end_dt - datetime.timedelta(days=1)
start = pd.Timestamp(start_dt, tz='US/Eastern')
end = pd.Timestamp(date+'T09:30:00', tz='US/Eastern')
data = client.timeseries.get_range(
dataset='XNAS.ITCH',
schema='ohlcv-1m',
symbols='ALL_SYMBOLS',
start=start,
end=end,
)
# Low-level way to get the symbology quickly
sym = data.request_symbology(client)
data._instrument_map.insert_json(sym)
# Get first and last prices for each symbol
df = data.to_df(tz='US/Eastern')
df = df.groupby(['symbol']).agg({'open': 'first', 'close': 'last'})
df['change'] = (df['close'] - df['open'])/df['open']
return df.sort_values(by='change')
df_move = get_df_move('2023-06-06')
print(df_move)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment