import pandas as pd | |
import time | |
from nltk.sentiment import SentimentIntensityAnalyzer | |
t0 = time.time() | |
top_100 = pd.read_csv('/Users/brit.cava/Desktop/TabPy/top100.csv') | |
text = top_100['Word'] | |
sid = SentimentIntensityAnalyzer() | |
word_score_dict = {} | |
for word in text: | |
ss = sid.polarity_scores(word) | |
word_score_dict[word]=(ss['compound']) | |
t1 = time.time() | |
total = t1-t0 | |
print(total) | |
df = pd.DataFrame(list(word_score_dict.iteritems()), columns=['word','score']) | |
df.to_csv("/Users/brit.cava/Desktop/Scores.csv", index=False, cols=('word','score')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment