Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
SVM training result
Best parameters set:
{'kernel': 'linear', 'C': 1}
Confusion matrix:
Labels: 8531,8539,8567,8568,8599,8715,8760,8773,8777,8778,8808,8816
[[ 4 0 0 0 0 0 0 0 0 0 0 0]
[ 0 2 0 0 0 0 0 0 0 0 0 0]
[ 0 0 12 0 0 0 0 0 0 0 0 0]
[ 0 0 0 9 0 0 0 0 0 0 0 0]
[ 0 0 0 0 19 0 0 0 0 0 0 0]
[ 0 0 0 0 0 8 0 0 0 0 0 0]
[ 0 0 0 0 0 0 8 0 0 0 0 0]
[ 0 0 0 0 0 0 0 5 0 0 0 0]
[ 0 0 0 0 0 0 0 0 9 0 0 0]
[ 0 0 0 0 0 0 0 0 0 11 0 0]
[ 0 0 0 0 0 0 0 0 0 0 5 0]
[ 0 0 0 0 0 0 0 0 0 0 0 4]]
Classification report:
precision recall f1-score support
8531 1.00 1.00 1.00 4
8539 1.00 1.00 1.00 2
8567 1.00 1.00 1.00 12
8568 1.00 1.00 1.00 9
8599 1.00 1.00 1.00 19
8715 1.00 1.00 1.00 8
8760 1.00 1.00 1.00 8
8773 1.00 1.00 1.00 5
8777 1.00 1.00 1.00 9
8778 1.00 1.00 1.00 11
8808 1.00 1.00 1.00 5
8816 1.00 1.00 1.00 4
avg / total 1.00 1.00 1.00 96
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment