Created
January 9, 2019 15:35
-
-
Save davidcesarino/4f40b20c918bff7173664abdb5f0e3d5 to your computer and use it in GitHub Desktop.
Arquivo em Python para condensar dados de precipitação da AESA/PB em um único arquivo, com entradas em ordem alfabética do município, sendo uma entrada por município gerada através da média das estações disponíveis.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2018 David Cesarino de Sousa | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import statistics | |
import locale | |
# You must place all AESA csv data under this directory. | |
path = '../dados/' | |
months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'] | |
def write_csv_values(contents, headers, file_name): | |
with open(file_name, 'w') as file: | |
writer = csv.writer(file, delimiter=';', quotechar='"') | |
writer.writerow(headers) | |
writer.writerows(contents) | |
file.close() | |
def get_cities(): | |
cities_list = [] | |
for y in range(2013, 2017): | |
for m in months: | |
in_file_name = str(y) + m + '.csv' | |
skip = True | |
with open(path + in_file_name, 'r') as file: | |
r = csv.reader(file, delimiter=',', quotechar='"') | |
for row in r: | |
if skip: # Skip the header. | |
skip = False | |
continue | |
test_city = row[0] | |
if cities_list.count(test_city) == 0: | |
cities_list.append(test_city) | |
file.close() | |
cities_list.sort(key=lambda x: locale.strxfrm(x)) | |
return cities_list | |
def get_averages_in_month(month_file_name): | |
# Convert the CSV file, eliminating dup cities by keeping all the values in a set. | |
rain_values = {} | |
skip = True | |
with open(month_file_name, 'r') as file: | |
r = csv.reader(file, delimiter=',', quotechar='"') | |
for row in r: | |
if skip: | |
skip = False | |
continue | |
rain_values.setdefault(row[0], []) | |
rain_values[row[0]].append(float(row[2])) | |
file.close() | |
# Average all the rain values to a final data structure. | |
final_data = [] | |
for city in rain_values: | |
average = statistics.mean(rain_values[city]) | |
final_data.append([city, average]) | |
final_data.sort(key=lambda x: locale.strxfrm(x[0])) | |
# final_data[city] = average # Used if final_data is dictionary. | |
return final_data | |
def get_averages(cities_list): | |
year_range = range(2013, 2017) | |
slots_per_city = len(year_range) * len(months) | |
full_precipitation_list = [] | |
for x in range(len(cities_list)): | |
full_precipitation_list.append([None, [None] * slots_per_city]) | |
for n in cities_list: | |
index = cities_list.index(n) | |
full_precipitation_list[index][0] = n | |
month = -1 | |
for y in year_range: | |
for m in months: | |
month += 1 | |
in_file_name = str(y) + m + '.csv' | |
list_of_averages = get_averages_in_month(path + in_file_name) | |
for entry in list_of_averages: | |
city_name = entry[0] | |
city_average = entry[1] | |
index = cities_list.index(city_name) | |
full_precipitation_list[index][1][month] = city_average | |
return full_precipitation_list | |
def main(): | |
default_locale = locale.getlocale(locale.LC_COLLATE) | |
locale.setlocale(locale.LC_COLLATE, "pt_BR.UTF-8") | |
cities = get_cities() | |
full_list = get_averages(cities) | |
csv_list = [] | |
for entry in full_list: | |
city_name = entry[0] | |
averages = entry[1] | |
temp_list = [city_name] | |
for average in averages: | |
temp_list.append(average) | |
csv_list.append(temp_list) | |
headers = ['city'] | |
for i in range(48): | |
headers.append('month' + str(i+1)) | |
for entry in csv_list: | |
for n, i in enumerate(entry): | |
if i is None: | |
entry[n] = -99 | |
write_csv_values(csv_list, headers, path + 'finished.csv') | |
locale.setlocale(locale.LC_COLLATE, default_locale) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment