Skip to content

Instantly share code, notes, and snippets.

@dbader
Last active August 2, 2021 12:31
Show Gist options
  • Star 21 You must be signed in to star a gist
  • Fork 8 You must be signed in to fork a gist
  • Save dbader/5488053 to your computer and use it in GitHub Desktop.
Save dbader/5488053 to your computer and use it in GitHub Desktop.
For my Raspberry Pi internet radio project I needed a way to render text suitable for a low resolution monochrome LCD. This article describes how to render 1-bit text using FreeType and Python. See http://dbader.org/blog/monochrome-font-rendering-with-freetype-and-python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Needs freetype-py>=1.0
# For more info see:
# http://dbader.org/blog/monochrome-font-rendering-with-freetype-and-python
# The MIT License (MIT)
#
# Copyright (c) 2013 Daniel Bader (http://dbader.org)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import freetype
class Bitmap(object):
"""
A 2D bitmap image represented as a list of byte values. Each byte indicates the state
of a single pixel in the bitmap. A value of 0 indicates that the pixel is `off`
and any other value indicates that it is `on`.
"""
def __init__(self, width, height, pixels=None):
self.width = width
self.height = height
self.pixels = pixels or bytearray(width * height)
def __repr__(self):
"""Return a string representation of the bitmap's pixels."""
rows = ''
for y in range(self.height):
for x in range(self.width):
rows += '#' if self.pixels[y * self.width + x] else '.'
rows += '\n'
return rows
def bitblt(self, src, x, y):
"""Copy all pixels from `src` into this bitmap"""
srcpixel = 0
dstpixel = y * self.width + x
row_offset = self.width - src.width
for sy in range(src.height):
for sx in range(src.width):
# Perform an OR operation on the destination pixel and the source pixel
# because glyph bitmaps may overlap if character kerning is applied, e.g.
# in the string "AVA", the "A" and "V" glyphs must be rendered with
# overlapping bounding boxes.
self.pixels[dstpixel] = self.pixels[dstpixel] or src.pixels[srcpixel]
srcpixel += 1
dstpixel += 1
dstpixel += row_offset
class Glyph(object):
def __init__(self, pixels, width, height, top, advance_width):
self.bitmap = Bitmap(width, height, pixels)
# The glyph bitmap's top-side bearing, i.e. the vertical distance from the
# baseline to the bitmap's top-most scanline.
self.top = top
# Ascent and descent determine how many pixels the glyph extends
# above or below the baseline.
self.descent = max(0, self.height - self.top)
self.ascent = max(0, max(self.top, self.height) - self.descent)
# The advance width determines where to place the next character horizontally,
# that is, how many pixels we move to the right to draw the next glyph.
self.advance_width = advance_width
@property
def width(self):
return self.bitmap.width
@property
def height(self):
return self.bitmap.height
@staticmethod
def from_glyphslot(slot):
"""Construct and return a Glyph object from a FreeType GlyphSlot."""
pixels = Glyph.unpack_mono_bitmap(slot.bitmap)
width, height = slot.bitmap.width, slot.bitmap.rows
top = slot.bitmap_top
# The advance width is given in FreeType's 26.6 fixed point format,
# which means that the pixel values are multiples of 64.
advance_width = slot.advance.x / 64
return Glyph(pixels, width, height, top, advance_width)
@staticmethod
def unpack_mono_bitmap(bitmap):
"""
Unpack a freetype FT_LOAD_TARGET_MONO glyph bitmap into a bytearray where each
pixel is represented by a single byte.
"""
# Allocate a bytearray of sufficient size to hold the glyph bitmap.
data = bytearray(bitmap.rows * bitmap.width)
# Iterate over every byte in the glyph bitmap. Note that we're not
# iterating over every pixel in the resulting unpacked bitmap --
# we're iterating over the packed bytes in the input bitmap.
for y in range(bitmap.rows):
for byte_index in range(bitmap.pitch):
# Read the byte that contains the packed pixel data.
byte_value = bitmap.buffer[y * bitmap.pitch + byte_index]
# We've processed this many bits (=pixels) so far. This determines
# where we'll read the next batch of pixels from.
num_bits_done = byte_index * 8
# Pre-compute where to write the pixels that we're going
# to unpack from the current byte in the glyph bitmap.
rowstart = y * bitmap.width + byte_index * 8
# Iterate over every bit (=pixel) that's still a part of the
# output bitmap. Sometimes we're only unpacking a fraction of a byte
# because glyphs may not always fit on a byte boundary. So we make sure
# to stop if we unpack past the current row of pixels.
for bit_index in range(min(8, bitmap.width - num_bits_done)):
# Unpack the next pixel from the current glyph byte.
bit = byte_value & (1 << (7 - bit_index))
# Write the pixel to the output bytearray. We ensure that `off`
# pixels have a value of 0 and `on` pixels have a value of 1.
data[rowstart + bit_index] = 1 if bit else 0
return data
class Font(object):
def __init__(self, filename, size):
self.face = freetype.Face(filename)
self.face.set_pixel_sizes(0, size)
def glyph_for_character(self, char):
# Let FreeType load the glyph for the given character and tell it to render
# a monochromatic bitmap representation.
self.face.load_char(char, freetype.FT_LOAD_RENDER | freetype.FT_LOAD_TARGET_MONO)
return Glyph.from_glyphslot(self.face.glyph)
def render_character(self, char):
glyph = self.glyph_for_character(char)
return glyph.bitmap
def kerning_offset(self, previous_char, char):
"""
Return the horizontal kerning offset in pixels when rendering `char`
after `previous_char`.
Use the resulting offset to adjust the glyph's drawing position to
reduces extra diagonal whitespace, for example in the string "AV" the
bitmaps for "A" and "V" may overlap slightly with some fonts. In this
case the glyph for "V" has a negative horizontal kerning offset as it is
moved slightly towards the "A".
"""
kerning = self.face.get_kerning(previous_char, char)
# The kerning offset is given in FreeType's 26.6 fixed point format,
# which means that the pixel values are multiples of 64.
return kerning.x / 64
def text_dimensions(self, text):
"""Return (width, height, baseline) of `text` rendered in the current font."""
width = 0
max_ascent = 0
max_descent = 0
previous_char = None
# For each character in the text string we get the glyph
# and update the overall dimensions of the resulting bitmap.
for char in text:
glyph = self.glyph_for_character(char)
max_ascent = max(max_ascent, glyph.ascent)
max_descent = max(max_descent, glyph.descent)
kerning_x = self.kerning_offset(previous_char, char)
# With kerning, the advance width may be less than the width of the glyph's bitmap.
# Make sure we compute the total width so that all of the glyph's pixels
# fit into the returned dimensions.
width += max(glyph.advance_width + kerning_x, glyph.width + kerning_x)
previous_char = char
height = max_ascent + max_descent
return (width, height, max_descent)
def render_text(self, text, width=None, height=None, baseline=None):
"""
Render the given `text` into a Bitmap and return it.
If `width`, `height`, and `baseline` are not specified they are computed using
the `text_dimensions' method.
"""
if None in (width, height, baseline):
width, height, baseline = self.text_dimensions(text)
x = 0
previous_char = None
outbuffer = Bitmap(width, height)
for char in text:
glyph = self.glyph_for_character(char)
# Take kerning information into account before we render the
# glyph to the output bitmap.
x += self.kerning_offset(previous_char, char)
# The vertical drawing position should place the glyph
# on the baseline as intended.
y = height - glyph.ascent - baseline
outbuffer.bitblt(glyph.bitmap, x, y)
x += glyph.advance_width
previous_char = char
return outbuffer
if __name__ == '__main__':
# Be sure to place 'helvetica.ttf' (or any other ttf / otf font file) in the working directory.
fnt = Font('helvetica.ttf', 24)
# Single characters
ch = fnt.render_character('e')
print(repr(ch))
# Multiple characters
txt = fnt.render_text('hello')
print(repr(txt))
# Kerning
print(repr(fnt.render_text('AV Wa')))
# Choosing the baseline correctly
print(repr(fnt.render_text('hello, world.')))
@tjelvar-olsson
Copy link

Thanks for this it is really useful!

To make this work on Python 3 one needs to enforce integer division. In other words modify line 105 to:

        advance_width = slot.advance.x // 64

and line 181 to:

        return kerning.x // 64

@EddyKuo
Copy link

EddyKuo commented Mar 16, 2016

This solved my problem. Thank you very much!!

@joesolly
Copy link

I've been using this to display text on an LED Dot Matrix and it works great. I added some additional utilities to center text in a given space and render multiple lines of text.
Here's a link to my gist of the updates: https://gist.github.com/joesolly/1345da1c0a1ff1aadc5f06d58a65c1bd

@tanuva
Copy link

tanuva commented Jan 24, 2020

I also use this in my own little pet project on an RPi 3. I did some profiling, hoping to get a few more frames on my display. One of the findings is that render_text() and text_dimensions() both compute glyphs for all the characters in the given text. I moved the glyph computation a little earlier and passed them on to text_dimensions(). On paper this almost doubles text rendering performance.

This is the particular change: tanuva/pyserdisp@c5cd07b

@dbader
Copy link
Author

dbader commented Jan 24, 2020

Ah nice, thanks for sharing @tanuva! :) I might've done something like that in the "production" version of this code that I used in my rpi project: https://github.com/dbader/piradio ... but it's been a while. In any case thanks for posting that tip here!

@ozancaglayan
Copy link

By adding a functools.lru_cache to glyph_for_character, I get a 10x speedup for a simple sentence like hello world, i miss you.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment