Last active
May 2, 2021 08:56
-
-
Save dbalabka/706dd9dcb5fd7e97a0136321c7b87364 to your computer and use it in GitHub Desktop.
Bootstrapping hypothesis testing of mean equality using Efron's algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import sqrt | |
from typing import Tuple | |
import numpy as np | |
import time | |
import numba | |
from scipy.stats import ttest_ind | |
@numba.njit(parallel=True, fastmath=True, nogil=True) | |
def compare_mean(z: np.ndarray, y: np.ndarray, n_samples: int = 10_000) -> Tuple[np.ndarray, float, float]: | |
t_obs = _calculate_mean_diff_statistics(z, y) | |
z_mean = z.mean() | |
y_mean = y.mean() | |
x_mean = np.concatenate((z, y)).mean() | |
z_ = np.add(np.subtract(z, z_mean), x_mean) | |
y_ = np.add(np.subtract(y, y_mean), x_mean) | |
t = np.zeros(n_samples) | |
for i in numba.prange(n_samples): | |
zz_ = np.random.choice(z_, z_.shape[0]) | |
yy_ = np.random.choice(y_, y_.shape[0]) | |
t[i] = _calculate_mean_diff_statistics(zz_, yy_) | |
return t, t_obs, float(np.sum(np.greater_equal(t, t_obs)) / n_samples) | |
@numba.njit(parallel=True, fastmath=True, nogil=True) | |
def _calculate_mean_diff_statistics(z_: np.ndarray, y_: np.ndarray) -> float: | |
z_mean_ = z_.mean() | |
y_mean_ = y_.mean() | |
return (z_mean_ - y_mean_) / sqrt( | |
(np.sum(np.power(np.subtract(z_, z_mean_), 2)) / (z_.shape[0] - 1)) / z_.shape[0] + | |
(np.sum(np.power(np.subtract(y_, y_mean_), 2)) / (y_.shape[0] - 1)) / y_.shape[0] | |
) | |
size = 100_000 | |
# mean and standard deviation | |
z = np.random.normal(0.05, 0.5, size) | |
y = np.random.normal(0, 0.5, size) | |
n_samples = 10_000 | |
start = time.time() | |
t = compare_mean(z, y, n_samples) | |
print(f'p-value: {t[2]}') | |
end = time.time() | |
print(end - start) | |
start = time.time() | |
t = ttest_ind(z, y) | |
print(f'p-value: {t[1]}') | |
end = time.time() | |
print(end - start) | |
# Numba debug | |
# bootstrap.compare_dist.parallel_diagnostics(level=4) | |
# bootstrap.compare_dist.inspect_types() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment