Created
January 4, 2018 06:55
DenseNet Caffe file
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "DenseNet" | |
input: "data" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
dim: 224 | |
dim: 224 | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
convolution_param { | |
num_output: 64 | |
bias_term: false | |
pad: 3 | |
kernel_size: 7 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv1_bn" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "conv1_scale" | |
type: "Scale" | |
bottom: "conv1" | |
top: "conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv1_relu" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
ceil_mode: false | |
} | |
} | |
layer { | |
name: "dense1_bn" | |
type: "BatchNorm" | |
bottom: "pool1" | |
top: "dense1_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense1_scale" | |
type: "Scale" | |
bottom: "dense1_bn" | |
top: "dense1_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense1_relu" | |
type: "ReLU" | |
bottom: "dense1_bn" | |
top: "dense1_bn" | |
} | |
layer { | |
name: "dense1_conv1" | |
type: "Convolution" | |
bottom: "dense1_bn" | |
top: "dense1_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense1_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense1_conv1" | |
top: "dense1_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense1_conv1_scale" | |
type: "Scale" | |
bottom: "dense1_conv1" | |
top: "dense1_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense1_conv1_relu" | |
type: "ReLU" | |
bottom: "dense1_conv1" | |
top: "dense1_conv1" | |
} | |
layer { | |
name: "dense1_conv2" | |
type: "Convolution" | |
bottom: "dense1_conv1" | |
top: "dense1_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense1_concat" | |
type: "Concat" | |
bottom: "pool1" | |
bottom: "dense1_conv2" | |
top: "dense1_concat" | |
} | |
layer { | |
name: "dense2_bn" | |
type: "BatchNorm" | |
bottom: "dense1_concat" | |
top: "dense2_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense2_scale" | |
type: "Scale" | |
bottom: "dense2_bn" | |
top: "dense2_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense2_relu" | |
type: "ReLU" | |
bottom: "dense2_bn" | |
top: "dense2_bn" | |
} | |
layer { | |
name: "dense2_conv1" | |
type: "Convolution" | |
bottom: "dense2_bn" | |
top: "dense2_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense2_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense2_conv1" | |
top: "dense2_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense2_conv1_scale" | |
type: "Scale" | |
bottom: "dense2_conv1" | |
top: "dense2_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense2_conv1_relu" | |
type: "ReLU" | |
bottom: "dense2_conv1" | |
top: "dense2_conv1" | |
} | |
layer { | |
name: "dense2_conv2" | |
type: "Convolution" | |
bottom: "dense2_conv1" | |
top: "dense2_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense2_concat" | |
type: "Concat" | |
bottom: "dense1_concat" | |
bottom: "dense2_conv2" | |
top: "dense2_concat" | |
} | |
layer { | |
name: "dense3_bn" | |
type: "BatchNorm" | |
bottom: "dense2_concat" | |
top: "dense3_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense3_scale" | |
type: "Scale" | |
bottom: "dense3_bn" | |
top: "dense3_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense3_relu" | |
type: "ReLU" | |
bottom: "dense3_bn" | |
top: "dense3_bn" | |
} | |
layer { | |
name: "dense3_conv1" | |
type: "Convolution" | |
bottom: "dense3_bn" | |
top: "dense3_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense3_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense3_conv1" | |
top: "dense3_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense3_conv1_scale" | |
type: "Scale" | |
bottom: "dense3_conv1" | |
top: "dense3_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense3_conv1_relu" | |
type: "ReLU" | |
bottom: "dense3_conv1" | |
top: "dense3_conv1" | |
} | |
layer { | |
name: "dense3_conv2" | |
type: "Convolution" | |
bottom: "dense3_conv1" | |
top: "dense3_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense3_concat" | |
type: "Concat" | |
bottom: "dense2_concat" | |
bottom: "dense3_conv2" | |
top: "dense3_concat" | |
} | |
layer { | |
name: "dense4_bn" | |
type: "BatchNorm" | |
bottom: "dense3_concat" | |
top: "dense4_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense4_scale" | |
type: "Scale" | |
bottom: "dense4_bn" | |
top: "dense4_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense4_relu" | |
type: "ReLU" | |
bottom: "dense4_bn" | |
top: "dense4_bn" | |
} | |
layer { | |
name: "dense4_conv1" | |
type: "Convolution" | |
bottom: "dense4_bn" | |
top: "dense4_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense4_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense4_conv1" | |
top: "dense4_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense4_conv1_scale" | |
type: "Scale" | |
bottom: "dense4_conv1" | |
top: "dense4_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense4_conv1_relu" | |
type: "ReLU" | |
bottom: "dense4_conv1" | |
top: "dense4_conv1" | |
} | |
layer { | |
name: "dense4_conv2" | |
type: "Convolution" | |
bottom: "dense4_conv1" | |
top: "dense4_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense4_concat" | |
type: "Concat" | |
bottom: "dense3_concat" | |
bottom: "dense4_conv2" | |
top: "dense4_concat" | |
} | |
layer { | |
name: "dense5_bn" | |
type: "BatchNorm" | |
bottom: "dense4_concat" | |
top: "dense5_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense5_scale" | |
type: "Scale" | |
bottom: "dense5_bn" | |
top: "dense5_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense5_relu" | |
type: "ReLU" | |
bottom: "dense5_bn" | |
top: "dense5_bn" | |
} | |
layer { | |
name: "dense5_conv1" | |
type: "Convolution" | |
bottom: "dense5_bn" | |
top: "dense5_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense5_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense5_conv1" | |
top: "dense5_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense5_conv1_scale" | |
type: "Scale" | |
bottom: "dense5_conv1" | |
top: "dense5_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense5_conv1_relu" | |
type: "ReLU" | |
bottom: "dense5_conv1" | |
top: "dense5_conv1" | |
} | |
layer { | |
name: "dense5_conv2" | |
type: "Convolution" | |
bottom: "dense5_conv1" | |
top: "dense5_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense5_concat" | |
type: "Concat" | |
bottom: "dense4_concat" | |
bottom: "dense5_conv2" | |
top: "dense5_concat" | |
} | |
layer { | |
name: "dense6_bn" | |
type: "BatchNorm" | |
bottom: "dense5_concat" | |
top: "dense6_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense6_scale" | |
type: "Scale" | |
bottom: "dense6_bn" | |
top: "dense6_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense6_relu" | |
type: "ReLU" | |
bottom: "dense6_bn" | |
top: "dense6_bn" | |
} | |
layer { | |
name: "dense6_conv1" | |
type: "Convolution" | |
bottom: "dense6_bn" | |
top: "dense6_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense6_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense6_conv1" | |
top: "dense6_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense6_conv1_scale" | |
type: "Scale" | |
bottom: "dense6_conv1" | |
top: "dense6_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense6_conv1_relu" | |
type: "ReLU" | |
bottom: "dense6_conv1" | |
top: "dense6_conv1" | |
} | |
layer { | |
name: "dense6_conv2" | |
type: "Convolution" | |
bottom: "dense6_conv1" | |
top: "dense6_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense6_concat" | |
type: "Concat" | |
bottom: "dense5_concat" | |
bottom: "dense6_conv2" | |
top: "dense6_concat" | |
} | |
layer { | |
name: "dense6_concat_bn" | |
type: "BatchNorm" | |
bottom: "dense6_concat" | |
top: "dense6_concat" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense6_concat_scale" | |
type: "Scale" | |
bottom: "dense6_concat" | |
top: "dense6_concat" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense6_concat_relu" | |
type: "ReLU" | |
bottom: "dense6_concat" | |
top: "dense6_concat" | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "dense6_concat" | |
top: "conv2" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: AVE | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "dense7_bn" | |
type: "BatchNorm" | |
bottom: "pool2" | |
top: "dense7_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense7_scale" | |
type: "Scale" | |
bottom: "dense7_bn" | |
top: "dense7_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense7_relu" | |
type: "ReLU" | |
bottom: "dense7_bn" | |
top: "dense7_bn" | |
} | |
layer { | |
name: "dense7_conv1" | |
type: "Convolution" | |
bottom: "dense7_bn" | |
top: "dense7_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense7_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense7_conv1" | |
top: "dense7_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense7_conv1_scale" | |
type: "Scale" | |
bottom: "dense7_conv1" | |
top: "dense7_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense7_conv1_relu" | |
type: "ReLU" | |
bottom: "dense7_conv1" | |
top: "dense7_conv1" | |
} | |
layer { | |
name: "dense7_conv2" | |
type: "Convolution" | |
bottom: "dense7_conv1" | |
top: "dense7_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense7_concat" | |
type: "Concat" | |
bottom: "pool2" | |
bottom: "dense7_conv2" | |
top: "dense7_concat" | |
} | |
layer { | |
name: "dense8_bn" | |
type: "BatchNorm" | |
bottom: "dense7_concat" | |
top: "dense8_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense8_scale" | |
type: "Scale" | |
bottom: "dense8_bn" | |
top: "dense8_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense8_relu" | |
type: "ReLU" | |
bottom: "dense8_bn" | |
top: "dense8_bn" | |
} | |
layer { | |
name: "dense8_conv1" | |
type: "Convolution" | |
bottom: "dense8_bn" | |
top: "dense8_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense8_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense8_conv1" | |
top: "dense8_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense8_conv1_scale" | |
type: "Scale" | |
bottom: "dense8_conv1" | |
top: "dense8_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense8_conv1_relu" | |
type: "ReLU" | |
bottom: "dense8_conv1" | |
top: "dense8_conv1" | |
} | |
layer { | |
name: "dense8_conv2" | |
type: "Convolution" | |
bottom: "dense8_conv1" | |
top: "dense8_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense8_concat" | |
type: "Concat" | |
bottom: "dense7_concat" | |
bottom: "dense8_conv2" | |
top: "dense8_concat" | |
} | |
layer { | |
name: "dense9_bn" | |
type: "BatchNorm" | |
bottom: "dense8_concat" | |
top: "dense9_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense9_scale" | |
type: "Scale" | |
bottom: "dense9_bn" | |
top: "dense9_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense9_relu" | |
type: "ReLU" | |
bottom: "dense9_bn" | |
top: "dense9_bn" | |
} | |
layer { | |
name: "dense9_conv1" | |
type: "Convolution" | |
bottom: "dense9_bn" | |
top: "dense9_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense9_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense9_conv1" | |
top: "dense9_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense9_conv1_scale" | |
type: "Scale" | |
bottom: "dense9_conv1" | |
top: "dense9_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense9_conv1_relu" | |
type: "ReLU" | |
bottom: "dense9_conv1" | |
top: "dense9_conv1" | |
} | |
layer { | |
name: "dense9_conv2" | |
type: "Convolution" | |
bottom: "dense9_conv1" | |
top: "dense9_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense9_concat" | |
type: "Concat" | |
bottom: "dense8_concat" | |
bottom: "dense9_conv2" | |
top: "dense9_concat" | |
} | |
layer { | |
name: "dense10_bn" | |
type: "BatchNorm" | |
bottom: "dense9_concat" | |
top: "dense10_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense10_scale" | |
type: "Scale" | |
bottom: "dense10_bn" | |
top: "dense10_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense10_relu" | |
type: "ReLU" | |
bottom: "dense10_bn" | |
top: "dense10_bn" | |
} | |
layer { | |
name: "dense10_conv1" | |
type: "Convolution" | |
bottom: "dense10_bn" | |
top: "dense10_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense10_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense10_conv1" | |
top: "dense10_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense10_conv1_scale" | |
type: "Scale" | |
bottom: "dense10_conv1" | |
top: "dense10_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense10_conv1_relu" | |
type: "ReLU" | |
bottom: "dense10_conv1" | |
top: "dense10_conv1" | |
} | |
layer { | |
name: "dense10_conv2" | |
type: "Convolution" | |
bottom: "dense10_conv1" | |
top: "dense10_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense10_concat" | |
type: "Concat" | |
bottom: "dense9_concat" | |
bottom: "dense10_conv2" | |
top: "dense10_concat" | |
} | |
layer { | |
name: "dense11_bn" | |
type: "BatchNorm" | |
bottom: "dense10_concat" | |
top: "dense11_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense11_scale" | |
type: "Scale" | |
bottom: "dense11_bn" | |
top: "dense11_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense11_relu" | |
type: "ReLU" | |
bottom: "dense11_bn" | |
top: "dense11_bn" | |
} | |
layer { | |
name: "dense11_conv1" | |
type: "Convolution" | |
bottom: "dense11_bn" | |
top: "dense11_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense11_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense11_conv1" | |
top: "dense11_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense11_conv1_scale" | |
type: "Scale" | |
bottom: "dense11_conv1" | |
top: "dense11_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense11_conv1_relu" | |
type: "ReLU" | |
bottom: "dense11_conv1" | |
top: "dense11_conv1" | |
} | |
layer { | |
name: "dense11_conv2" | |
type: "Convolution" | |
bottom: "dense11_conv1" | |
top: "dense11_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense11_concat" | |
type: "Concat" | |
bottom: "dense10_concat" | |
bottom: "dense11_conv2" | |
top: "dense11_concat" | |
} | |
layer { | |
name: "dense12_bn" | |
type: "BatchNorm" | |
bottom: "dense11_concat" | |
top: "dense12_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense12_scale" | |
type: "Scale" | |
bottom: "dense12_bn" | |
top: "dense12_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense12_relu" | |
type: "ReLU" | |
bottom: "dense12_bn" | |
top: "dense12_bn" | |
} | |
layer { | |
name: "dense12_conv1" | |
type: "Convolution" | |
bottom: "dense12_bn" | |
top: "dense12_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense12_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense12_conv1" | |
top: "dense12_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense12_conv1_scale" | |
type: "Scale" | |
bottom: "dense12_conv1" | |
top: "dense12_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense12_conv1_relu" | |
type: "ReLU" | |
bottom: "dense12_conv1" | |
top: "dense12_conv1" | |
} | |
layer { | |
name: "dense12_conv2" | |
type: "Convolution" | |
bottom: "dense12_conv1" | |
top: "dense12_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense12_concat" | |
type: "Concat" | |
bottom: "dense11_concat" | |
bottom: "dense12_conv2" | |
top: "dense12_concat" | |
} | |
layer { | |
name: "dense13_bn" | |
type: "BatchNorm" | |
bottom: "dense12_concat" | |
top: "dense13_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense13_scale" | |
type: "Scale" | |
bottom: "dense13_bn" | |
top: "dense13_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense13_relu" | |
type: "ReLU" | |
bottom: "dense13_bn" | |
top: "dense13_bn" | |
} | |
layer { | |
name: "dense13_conv1" | |
type: "Convolution" | |
bottom: "dense13_bn" | |
top: "dense13_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense13_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense13_conv1" | |
top: "dense13_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense13_conv1_scale" | |
type: "Scale" | |
bottom: "dense13_conv1" | |
top: "dense13_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense13_conv1_relu" | |
type: "ReLU" | |
bottom: "dense13_conv1" | |
top: "dense13_conv1" | |
} | |
layer { | |
name: "dense13_conv2" | |
type: "Convolution" | |
bottom: "dense13_conv1" | |
top: "dense13_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense13_concat" | |
type: "Concat" | |
bottom: "dense12_concat" | |
bottom: "dense13_conv2" | |
top: "dense13_concat" | |
} | |
layer { | |
name: "dense14_bn" | |
type: "BatchNorm" | |
bottom: "dense13_concat" | |
top: "dense14_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense14_scale" | |
type: "Scale" | |
bottom: "dense14_bn" | |
top: "dense14_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense14_relu" | |
type: "ReLU" | |
bottom: "dense14_bn" | |
top: "dense14_bn" | |
} | |
layer { | |
name: "dense14_conv1" | |
type: "Convolution" | |
bottom: "dense14_bn" | |
top: "dense14_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense14_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense14_conv1" | |
top: "dense14_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense14_conv1_scale" | |
type: "Scale" | |
bottom: "dense14_conv1" | |
top: "dense14_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense14_conv1_relu" | |
type: "ReLU" | |
bottom: "dense14_conv1" | |
top: "dense14_conv1" | |
} | |
layer { | |
name: "dense14_conv2" | |
type: "Convolution" | |
bottom: "dense14_conv1" | |
top: "dense14_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense14_concat" | |
type: "Concat" | |
bottom: "dense13_concat" | |
bottom: "dense14_conv2" | |
top: "dense14_concat" | |
} | |
layer { | |
name: "dense15_bn" | |
type: "BatchNorm" | |
bottom: "dense14_concat" | |
top: "dense15_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense15_scale" | |
type: "Scale" | |
bottom: "dense15_bn" | |
top: "dense15_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense15_relu" | |
type: "ReLU" | |
bottom: "dense15_bn" | |
top: "dense15_bn" | |
} | |
layer { | |
name: "dense15_conv1" | |
type: "Convolution" | |
bottom: "dense15_bn" | |
top: "dense15_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense15_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense15_conv1" | |
top: "dense15_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense15_conv1_scale" | |
type: "Scale" | |
bottom: "dense15_conv1" | |
top: "dense15_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense15_conv1_relu" | |
type: "ReLU" | |
bottom: "dense15_conv1" | |
top: "dense15_conv1" | |
} | |
layer { | |
name: "dense15_conv2" | |
type: "Convolution" | |
bottom: "dense15_conv1" | |
top: "dense15_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense15_concat" | |
type: "Concat" | |
bottom: "dense14_concat" | |
bottom: "dense15_conv2" | |
top: "dense15_concat" | |
} | |
layer { | |
name: "dense16_bn" | |
type: "BatchNorm" | |
bottom: "dense15_concat" | |
top: "dense16_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense16_scale" | |
type: "Scale" | |
bottom: "dense16_bn" | |
top: "dense16_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense16_relu" | |
type: "ReLU" | |
bottom: "dense16_bn" | |
top: "dense16_bn" | |
} | |
layer { | |
name: "dense16_conv1" | |
type: "Convolution" | |
bottom: "dense16_bn" | |
top: "dense16_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense16_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense16_conv1" | |
top: "dense16_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense16_conv1_scale" | |
type: "Scale" | |
bottom: "dense16_conv1" | |
top: "dense16_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense16_conv1_relu" | |
type: "ReLU" | |
bottom: "dense16_conv1" | |
top: "dense16_conv1" | |
} | |
layer { | |
name: "dense16_conv2" | |
type: "Convolution" | |
bottom: "dense16_conv1" | |
top: "dense16_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense16_concat" | |
type: "Concat" | |
bottom: "dense15_concat" | |
bottom: "dense16_conv2" | |
top: "dense16_concat" | |
} | |
layer { | |
name: "dense17_bn" | |
type: "BatchNorm" | |
bottom: "dense16_concat" | |
top: "dense17_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense17_scale" | |
type: "Scale" | |
bottom: "dense17_bn" | |
top: "dense17_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense17_relu" | |
type: "ReLU" | |
bottom: "dense17_bn" | |
top: "dense17_bn" | |
} | |
layer { | |
name: "dense17_conv1" | |
type: "Convolution" | |
bottom: "dense17_bn" | |
top: "dense17_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense17_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense17_conv1" | |
top: "dense17_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense17_conv1_scale" | |
type: "Scale" | |
bottom: "dense17_conv1" | |
top: "dense17_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense17_conv1_relu" | |
type: "ReLU" | |
bottom: "dense17_conv1" | |
top: "dense17_conv1" | |
} | |
layer { | |
name: "dense17_conv2" | |
type: "Convolution" | |
bottom: "dense17_conv1" | |
top: "dense17_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense17_concat" | |
type: "Concat" | |
bottom: "dense16_concat" | |
bottom: "dense17_conv2" | |
top: "dense17_concat" | |
} | |
layer { | |
name: "dense18_bn" | |
type: "BatchNorm" | |
bottom: "dense17_concat" | |
top: "dense18_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense18_scale" | |
type: "Scale" | |
bottom: "dense18_bn" | |
top: "dense18_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense18_relu" | |
type: "ReLU" | |
bottom: "dense18_bn" | |
top: "dense18_bn" | |
} | |
layer { | |
name: "dense18_conv1" | |
type: "Convolution" | |
bottom: "dense18_bn" | |
top: "dense18_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense18_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense18_conv1" | |
top: "dense18_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense18_conv1_scale" | |
type: "Scale" | |
bottom: "dense18_conv1" | |
top: "dense18_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense18_conv1_relu" | |
type: "ReLU" | |
bottom: "dense18_conv1" | |
top: "dense18_conv1" | |
} | |
layer { | |
name: "dense18_conv2" | |
type: "Convolution" | |
bottom: "dense18_conv1" | |
top: "dense18_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense18_concat" | |
type: "Concat" | |
bottom: "dense17_concat" | |
bottom: "dense18_conv2" | |
top: "dense18_concat" | |
} | |
layer { | |
name: "dense18_concat_bn" | |
type: "BatchNorm" | |
bottom: "dense18_concat" | |
top: "dense18_concat" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense18_concat_scale" | |
type: "Scale" | |
bottom: "dense18_concat" | |
top: "dense18_concat" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense18_concat_relu" | |
type: "ReLU" | |
bottom: "dense18_concat" | |
top: "dense18_concat" | |
} | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "dense18_concat" | |
top: "conv3" | |
convolution_param { | |
num_output: 256 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3" | |
top: "pool3" | |
pooling_param { | |
pool: AVE | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "dense19_bn" | |
type: "BatchNorm" | |
bottom: "pool3" | |
top: "dense19_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense19_scale" | |
type: "Scale" | |
bottom: "dense19_bn" | |
top: "dense19_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense19_relu" | |
type: "ReLU" | |
bottom: "dense19_bn" | |
top: "dense19_bn" | |
} | |
layer { | |
name: "dense19_conv1" | |
type: "Convolution" | |
bottom: "dense19_bn" | |
top: "dense19_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense19_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense19_conv1" | |
top: "dense19_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense19_conv1_scale" | |
type: "Scale" | |
bottom: "dense19_conv1" | |
top: "dense19_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense19_conv1_relu" | |
type: "ReLU" | |
bottom: "dense19_conv1" | |
top: "dense19_conv1" | |
} | |
layer { | |
name: "dense19_conv2" | |
type: "Convolution" | |
bottom: "dense19_conv1" | |
top: "dense19_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense19_concat" | |
type: "Concat" | |
bottom: "pool3" | |
bottom: "dense19_conv2" | |
top: "dense19_concat" | |
} | |
layer { | |
name: "dense20_bn" | |
type: "BatchNorm" | |
bottom: "dense19_concat" | |
top: "dense20_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense20_scale" | |
type: "Scale" | |
bottom: "dense20_bn" | |
top: "dense20_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense20_relu" | |
type: "ReLU" | |
bottom: "dense20_bn" | |
top: "dense20_bn" | |
} | |
layer { | |
name: "dense20_conv1" | |
type: "Convolution" | |
bottom: "dense20_bn" | |
top: "dense20_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense20_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense20_conv1" | |
top: "dense20_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense20_conv1_scale" | |
type: "Scale" | |
bottom: "dense20_conv1" | |
top: "dense20_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense20_conv1_relu" | |
type: "ReLU" | |
bottom: "dense20_conv1" | |
top: "dense20_conv1" | |
} | |
layer { | |
name: "dense20_conv2" | |
type: "Convolution" | |
bottom: "dense20_conv1" | |
top: "dense20_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense20_concat" | |
type: "Concat" | |
bottom: "dense19_concat" | |
bottom: "dense20_conv2" | |
top: "dense20_concat" | |
} | |
layer { | |
name: "dense21_bn" | |
type: "BatchNorm" | |
bottom: "dense20_concat" | |
top: "dense21_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense21_scale" | |
type: "Scale" | |
bottom: "dense21_bn" | |
top: "dense21_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense21_relu" | |
type: "ReLU" | |
bottom: "dense21_bn" | |
top: "dense21_bn" | |
} | |
layer { | |
name: "dense21_conv1" | |
type: "Convolution" | |
bottom: "dense21_bn" | |
top: "dense21_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense21_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense21_conv1" | |
top: "dense21_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense21_conv1_scale" | |
type: "Scale" | |
bottom: "dense21_conv1" | |
top: "dense21_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense21_conv1_relu" | |
type: "ReLU" | |
bottom: "dense21_conv1" | |
top: "dense21_conv1" | |
} | |
layer { | |
name: "dense21_conv2" | |
type: "Convolution" | |
bottom: "dense21_conv1" | |
top: "dense21_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense21_concat" | |
type: "Concat" | |
bottom: "dense20_concat" | |
bottom: "dense21_conv2" | |
top: "dense21_concat" | |
} | |
layer { | |
name: "dense22_bn" | |
type: "BatchNorm" | |
bottom: "dense21_concat" | |
top: "dense22_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense22_scale" | |
type: "Scale" | |
bottom: "dense22_bn" | |
top: "dense22_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense22_relu" | |
type: "ReLU" | |
bottom: "dense22_bn" | |
top: "dense22_bn" | |
} | |
layer { | |
name: "dense22_conv1" | |
type: "Convolution" | |
bottom: "dense22_bn" | |
top: "dense22_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense22_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense22_conv1" | |
top: "dense22_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense22_conv1_scale" | |
type: "Scale" | |
bottom: "dense22_conv1" | |
top: "dense22_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense22_conv1_relu" | |
type: "ReLU" | |
bottom: "dense22_conv1" | |
top: "dense22_conv1" | |
} | |
layer { | |
name: "dense22_conv2" | |
type: "Convolution" | |
bottom: "dense22_conv1" | |
top: "dense22_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense22_concat" | |
type: "Concat" | |
bottom: "dense21_concat" | |
bottom: "dense22_conv2" | |
top: "dense22_concat" | |
} | |
layer { | |
name: "dense23_bn" | |
type: "BatchNorm" | |
bottom: "dense22_concat" | |
top: "dense23_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense23_scale" | |
type: "Scale" | |
bottom: "dense23_bn" | |
top: "dense23_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense23_relu" | |
type: "ReLU" | |
bottom: "dense23_bn" | |
top: "dense23_bn" | |
} | |
layer { | |
name: "dense23_conv1" | |
type: "Convolution" | |
bottom: "dense23_bn" | |
top: "dense23_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense23_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense23_conv1" | |
top: "dense23_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense23_conv1_scale" | |
type: "Scale" | |
bottom: "dense23_conv1" | |
top: "dense23_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense23_conv1_relu" | |
type: "ReLU" | |
bottom: "dense23_conv1" | |
top: "dense23_conv1" | |
} | |
layer { | |
name: "dense23_conv2" | |
type: "Convolution" | |
bottom: "dense23_conv1" | |
top: "dense23_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense23_concat" | |
type: "Concat" | |
bottom: "dense22_concat" | |
bottom: "dense23_conv2" | |
top: "dense23_concat" | |
} | |
layer { | |
name: "dense24_bn" | |
type: "BatchNorm" | |
bottom: "dense23_concat" | |
top: "dense24_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense24_scale" | |
type: "Scale" | |
bottom: "dense24_bn" | |
top: "dense24_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense24_relu" | |
type: "ReLU" | |
bottom: "dense24_bn" | |
top: "dense24_bn" | |
} | |
layer { | |
name: "dense24_conv1" | |
type: "Convolution" | |
bottom: "dense24_bn" | |
top: "dense24_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense24_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense24_conv1" | |
top: "dense24_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense24_conv1_scale" | |
type: "Scale" | |
bottom: "dense24_conv1" | |
top: "dense24_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense24_conv1_relu" | |
type: "ReLU" | |
bottom: "dense24_conv1" | |
top: "dense24_conv1" | |
} | |
layer { | |
name: "dense24_conv2" | |
type: "Convolution" | |
bottom: "dense24_conv1" | |
top: "dense24_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense24_concat" | |
type: "Concat" | |
bottom: "dense23_concat" | |
bottom: "dense24_conv2" | |
top: "dense24_concat" | |
} | |
layer { | |
name: "dense25_bn" | |
type: "BatchNorm" | |
bottom: "dense24_concat" | |
top: "dense25_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense25_scale" | |
type: "Scale" | |
bottom: "dense25_bn" | |
top: "dense25_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense25_relu" | |
type: "ReLU" | |
bottom: "dense25_bn" | |
top: "dense25_bn" | |
} | |
layer { | |
name: "dense25_conv1" | |
type: "Convolution" | |
bottom: "dense25_bn" | |
top: "dense25_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense25_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense25_conv1" | |
top: "dense25_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense25_conv1_scale" | |
type: "Scale" | |
bottom: "dense25_conv1" | |
top: "dense25_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense25_conv1_relu" | |
type: "ReLU" | |
bottom: "dense25_conv1" | |
top: "dense25_conv1" | |
} | |
layer { | |
name: "dense25_conv2" | |
type: "Convolution" | |
bottom: "dense25_conv1" | |
top: "dense25_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense25_concat" | |
type: "Concat" | |
bottom: "dense24_concat" | |
bottom: "dense25_conv2" | |
top: "dense25_concat" | |
} | |
layer { | |
name: "dense26_bn" | |
type: "BatchNorm" | |
bottom: "dense25_concat" | |
top: "dense26_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense26_scale" | |
type: "Scale" | |
bottom: "dense26_bn" | |
top: "dense26_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense26_relu" | |
type: "ReLU" | |
bottom: "dense26_bn" | |
top: "dense26_bn" | |
} | |
layer { | |
name: "dense26_conv1" | |
type: "Convolution" | |
bottom: "dense26_bn" | |
top: "dense26_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense26_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense26_conv1" | |
top: "dense26_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense26_conv1_scale" | |
type: "Scale" | |
bottom: "dense26_conv1" | |
top: "dense26_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense26_conv1_relu" | |
type: "ReLU" | |
bottom: "dense26_conv1" | |
top: "dense26_conv1" | |
} | |
layer { | |
name: "dense26_conv2" | |
type: "Convolution" | |
bottom: "dense26_conv1" | |
top: "dense26_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense26_concat" | |
type: "Concat" | |
bottom: "dense25_concat" | |
bottom: "dense26_conv2" | |
top: "dense26_concat" | |
} | |
layer { | |
name: "dense27_bn" | |
type: "BatchNorm" | |
bottom: "dense26_concat" | |
top: "dense27_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense27_scale" | |
type: "Scale" | |
bottom: "dense27_bn" | |
top: "dense27_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense27_relu" | |
type: "ReLU" | |
bottom: "dense27_bn" | |
top: "dense27_bn" | |
} | |
layer { | |
name: "dense27_conv1" | |
type: "Convolution" | |
bottom: "dense27_bn" | |
top: "dense27_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense27_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense27_conv1" | |
top: "dense27_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense27_conv1_scale" | |
type: "Scale" | |
bottom: "dense27_conv1" | |
top: "dense27_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense27_conv1_relu" | |
type: "ReLU" | |
bottom: "dense27_conv1" | |
top: "dense27_conv1" | |
} | |
layer { | |
name: "dense27_conv2" | |
type: "Convolution" | |
bottom: "dense27_conv1" | |
top: "dense27_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense27_concat" | |
type: "Concat" | |
bottom: "dense26_concat" | |
bottom: "dense27_conv2" | |
top: "dense27_concat" | |
} | |
layer { | |
name: "dense28_bn" | |
type: "BatchNorm" | |
bottom: "dense27_concat" | |
top: "dense28_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense28_scale" | |
type: "Scale" | |
bottom: "dense28_bn" | |
top: "dense28_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense28_relu" | |
type: "ReLU" | |
bottom: "dense28_bn" | |
top: "dense28_bn" | |
} | |
layer { | |
name: "dense28_conv1" | |
type: "Convolution" | |
bottom: "dense28_bn" | |
top: "dense28_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense28_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense28_conv1" | |
top: "dense28_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense28_conv1_scale" | |
type: "Scale" | |
bottom: "dense28_conv1" | |
top: "dense28_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense28_conv1_relu" | |
type: "ReLU" | |
bottom: "dense28_conv1" | |
top: "dense28_conv1" | |
} | |
layer { | |
name: "dense28_conv2" | |
type: "Convolution" | |
bottom: "dense28_conv1" | |
top: "dense28_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense28_concat" | |
type: "Concat" | |
bottom: "dense27_concat" | |
bottom: "dense28_conv2" | |
top: "dense28_concat" | |
} | |
layer { | |
name: "dense29_bn" | |
type: "BatchNorm" | |
bottom: "dense28_concat" | |
top: "dense29_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense29_scale" | |
type: "Scale" | |
bottom: "dense29_bn" | |
top: "dense29_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense29_relu" | |
type: "ReLU" | |
bottom: "dense29_bn" | |
top: "dense29_bn" | |
} | |
layer { | |
name: "dense29_conv1" | |
type: "Convolution" | |
bottom: "dense29_bn" | |
top: "dense29_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense29_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense29_conv1" | |
top: "dense29_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense29_conv1_scale" | |
type: "Scale" | |
bottom: "dense29_conv1" | |
top: "dense29_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense29_conv1_relu" | |
type: "ReLU" | |
bottom: "dense29_conv1" | |
top: "dense29_conv1" | |
} | |
layer { | |
name: "dense29_conv2" | |
type: "Convolution" | |
bottom: "dense29_conv1" | |
top: "dense29_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense29_concat" | |
type: "Concat" | |
bottom: "dense28_concat" | |
bottom: "dense29_conv2" | |
top: "dense29_concat" | |
} | |
layer { | |
name: "dense30_bn" | |
type: "BatchNorm" | |
bottom: "dense29_concat" | |
top: "dense30_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense30_scale" | |
type: "Scale" | |
bottom: "dense30_bn" | |
top: "dense30_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense30_relu" | |
type: "ReLU" | |
bottom: "dense30_bn" | |
top: "dense30_bn" | |
} | |
layer { | |
name: "dense30_conv1" | |
type: "Convolution" | |
bottom: "dense30_bn" | |
top: "dense30_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense30_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense30_conv1" | |
top: "dense30_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense30_conv1_scale" | |
type: "Scale" | |
bottom: "dense30_conv1" | |
top: "dense30_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense30_conv1_relu" | |
type: "ReLU" | |
bottom: "dense30_conv1" | |
top: "dense30_conv1" | |
} | |
layer { | |
name: "dense30_conv2" | |
type: "Convolution" | |
bottom: "dense30_conv1" | |
top: "dense30_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense30_concat" | |
type: "Concat" | |
bottom: "dense29_concat" | |
bottom: "dense30_conv2" | |
top: "dense30_concat" | |
} | |
layer { | |
name: "dense31_bn" | |
type: "BatchNorm" | |
bottom: "dense30_concat" | |
top: "dense31_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense31_scale" | |
type: "Scale" | |
bottom: "dense31_bn" | |
top: "dense31_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense31_relu" | |
type: "ReLU" | |
bottom: "dense31_bn" | |
top: "dense31_bn" | |
} | |
layer { | |
name: "dense31_conv1" | |
type: "Convolution" | |
bottom: "dense31_bn" | |
top: "dense31_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense31_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense31_conv1" | |
top: "dense31_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense31_conv1_scale" | |
type: "Scale" | |
bottom: "dense31_conv1" | |
top: "dense31_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense31_conv1_relu" | |
type: "ReLU" | |
bottom: "dense31_conv1" | |
top: "dense31_conv1" | |
} | |
layer { | |
name: "dense31_conv2" | |
type: "Convolution" | |
bottom: "dense31_conv1" | |
top: "dense31_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense31_concat" | |
type: "Concat" | |
bottom: "dense30_concat" | |
bottom: "dense31_conv2" | |
top: "dense31_concat" | |
} | |
layer { | |
name: "dense32_bn" | |
type: "BatchNorm" | |
bottom: "dense31_concat" | |
top: "dense32_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense32_scale" | |
type: "Scale" | |
bottom: "dense32_bn" | |
top: "dense32_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense32_relu" | |
type: "ReLU" | |
bottom: "dense32_bn" | |
top: "dense32_bn" | |
} | |
layer { | |
name: "dense32_conv1" | |
type: "Convolution" | |
bottom: "dense32_bn" | |
top: "dense32_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense32_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense32_conv1" | |
top: "dense32_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense32_conv1_scale" | |
type: "Scale" | |
bottom: "dense32_conv1" | |
top: "dense32_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense32_conv1_relu" | |
type: "ReLU" | |
bottom: "dense32_conv1" | |
top: "dense32_conv1" | |
} | |
layer { | |
name: "dense32_conv2" | |
type: "Convolution" | |
bottom: "dense32_conv1" | |
top: "dense32_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense32_concat" | |
type: "Concat" | |
bottom: "dense31_concat" | |
bottom: "dense32_conv2" | |
top: "dense32_concat" | |
} | |
layer { | |
name: "dense33_bn" | |
type: "BatchNorm" | |
bottom: "dense32_concat" | |
top: "dense33_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense33_scale" | |
type: "Scale" | |
bottom: "dense33_bn" | |
top: "dense33_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense33_relu" | |
type: "ReLU" | |
bottom: "dense33_bn" | |
top: "dense33_bn" | |
} | |
layer { | |
name: "dense33_conv1" | |
type: "Convolution" | |
bottom: "dense33_bn" | |
top: "dense33_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense33_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense33_conv1" | |
top: "dense33_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense33_conv1_scale" | |
type: "Scale" | |
bottom: "dense33_conv1" | |
top: "dense33_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense33_conv1_relu" | |
type: "ReLU" | |
bottom: "dense33_conv1" | |
top: "dense33_conv1" | |
} | |
layer { | |
name: "dense33_conv2" | |
type: "Convolution" | |
bottom: "dense33_conv1" | |
top: "dense33_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense33_concat" | |
type: "Concat" | |
bottom: "dense32_concat" | |
bottom: "dense33_conv2" | |
top: "dense33_concat" | |
} | |
layer { | |
name: "dense34_bn" | |
type: "BatchNorm" | |
bottom: "dense33_concat" | |
top: "dense34_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense34_scale" | |
type: "Scale" | |
bottom: "dense34_bn" | |
top: "dense34_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense34_relu" | |
type: "ReLU" | |
bottom: "dense34_bn" | |
top: "dense34_bn" | |
} | |
layer { | |
name: "dense34_conv1" | |
type: "Convolution" | |
bottom: "dense34_bn" | |
top: "dense34_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense34_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense34_conv1" | |
top: "dense34_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense34_conv1_scale" | |
type: "Scale" | |
bottom: "dense34_conv1" | |
top: "dense34_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense34_conv1_relu" | |
type: "ReLU" | |
bottom: "dense34_conv1" | |
top: "dense34_conv1" | |
} | |
layer { | |
name: "dense34_conv2" | |
type: "Convolution" | |
bottom: "dense34_conv1" | |
top: "dense34_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense34_concat" | |
type: "Concat" | |
bottom: "dense33_concat" | |
bottom: "dense34_conv2" | |
top: "dense34_concat" | |
} | |
layer { | |
name: "dense35_bn" | |
type: "BatchNorm" | |
bottom: "dense34_concat" | |
top: "dense35_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense35_scale" | |
type: "Scale" | |
bottom: "dense35_bn" | |
top: "dense35_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense35_relu" | |
type: "ReLU" | |
bottom: "dense35_bn" | |
top: "dense35_bn" | |
} | |
layer { | |
name: "dense35_conv1" | |
type: "Convolution" | |
bottom: "dense35_bn" | |
top: "dense35_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense35_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense35_conv1" | |
top: "dense35_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense35_conv1_scale" | |
type: "Scale" | |
bottom: "dense35_conv1" | |
top: "dense35_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense35_conv1_relu" | |
type: "ReLU" | |
bottom: "dense35_conv1" | |
top: "dense35_conv1" | |
} | |
layer { | |
name: "dense35_conv2" | |
type: "Convolution" | |
bottom: "dense35_conv1" | |
top: "dense35_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense35_concat" | |
type: "Concat" | |
bottom: "dense34_concat" | |
bottom: "dense35_conv2" | |
top: "dense35_concat" | |
} | |
layer { | |
name: "dense36_bn" | |
type: "BatchNorm" | |
bottom: "dense35_concat" | |
top: "dense36_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense36_scale" | |
type: "Scale" | |
bottom: "dense36_bn" | |
top: "dense36_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense36_relu" | |
type: "ReLU" | |
bottom: "dense36_bn" | |
top: "dense36_bn" | |
} | |
layer { | |
name: "dense36_conv1" | |
type: "Convolution" | |
bottom: "dense36_bn" | |
top: "dense36_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense36_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense36_conv1" | |
top: "dense36_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense36_conv1_scale" | |
type: "Scale" | |
bottom: "dense36_conv1" | |
top: "dense36_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense36_conv1_relu" | |
type: "ReLU" | |
bottom: "dense36_conv1" | |
top: "dense36_conv1" | |
} | |
layer { | |
name: "dense36_conv2" | |
type: "Convolution" | |
bottom: "dense36_conv1" | |
top: "dense36_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense36_concat" | |
type: "Concat" | |
bottom: "dense35_concat" | |
bottom: "dense36_conv2" | |
top: "dense36_concat" | |
} | |
layer { | |
name: "dense37_bn" | |
type: "BatchNorm" | |
bottom: "dense36_concat" | |
top: "dense37_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense37_scale" | |
type: "Scale" | |
bottom: "dense37_bn" | |
top: "dense37_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense37_relu" | |
type: "ReLU" | |
bottom: "dense37_bn" | |
top: "dense37_bn" | |
} | |
layer { | |
name: "dense37_conv1" | |
type: "Convolution" | |
bottom: "dense37_bn" | |
top: "dense37_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense37_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense37_conv1" | |
top: "dense37_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense37_conv1_scale" | |
type: "Scale" | |
bottom: "dense37_conv1" | |
top: "dense37_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense37_conv1_relu" | |
type: "ReLU" | |
bottom: "dense37_conv1" | |
top: "dense37_conv1" | |
} | |
layer { | |
name: "dense37_conv2" | |
type: "Convolution" | |
bottom: "dense37_conv1" | |
top: "dense37_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense37_concat" | |
type: "Concat" | |
bottom: "dense36_concat" | |
bottom: "dense37_conv2" | |
top: "dense37_concat" | |
} | |
layer { | |
name: "dense38_bn" | |
type: "BatchNorm" | |
bottom: "dense37_concat" | |
top: "dense38_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense38_scale" | |
type: "Scale" | |
bottom: "dense38_bn" | |
top: "dense38_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense38_relu" | |
type: "ReLU" | |
bottom: "dense38_bn" | |
top: "dense38_bn" | |
} | |
layer { | |
name: "dense38_conv1" | |
type: "Convolution" | |
bottom: "dense38_bn" | |
top: "dense38_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense38_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense38_conv1" | |
top: "dense38_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense38_conv1_scale" | |
type: "Scale" | |
bottom: "dense38_conv1" | |
top: "dense38_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense38_conv1_relu" | |
type: "ReLU" | |
bottom: "dense38_conv1" | |
top: "dense38_conv1" | |
} | |
layer { | |
name: "dense38_conv2" | |
type: "Convolution" | |
bottom: "dense38_conv1" | |
top: "dense38_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense38_concat" | |
type: "Concat" | |
bottom: "dense37_concat" | |
bottom: "dense38_conv2" | |
top: "dense38_concat" | |
} | |
layer { | |
name: "dense39_bn" | |
type: "BatchNorm" | |
bottom: "dense38_concat" | |
top: "dense39_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense39_scale" | |
type: "Scale" | |
bottom: "dense39_bn" | |
top: "dense39_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense39_relu" | |
type: "ReLU" | |
bottom: "dense39_bn" | |
top: "dense39_bn" | |
} | |
layer { | |
name: "dense39_conv1" | |
type: "Convolution" | |
bottom: "dense39_bn" | |
top: "dense39_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense39_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense39_conv1" | |
top: "dense39_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense39_conv1_scale" | |
type: "Scale" | |
bottom: "dense39_conv1" | |
top: "dense39_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense39_conv1_relu" | |
type: "ReLU" | |
bottom: "dense39_conv1" | |
top: "dense39_conv1" | |
} | |
layer { | |
name: "dense39_conv2" | |
type: "Convolution" | |
bottom: "dense39_conv1" | |
top: "dense39_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense39_concat" | |
type: "Concat" | |
bottom: "dense38_concat" | |
bottom: "dense39_conv2" | |
top: "dense39_concat" | |
} | |
layer { | |
name: "dense40_bn" | |
type: "BatchNorm" | |
bottom: "dense39_concat" | |
top: "dense40_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense40_scale" | |
type: "Scale" | |
bottom: "dense40_bn" | |
top: "dense40_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense40_relu" | |
type: "ReLU" | |
bottom: "dense40_bn" | |
top: "dense40_bn" | |
} | |
layer { | |
name: "dense40_conv1" | |
type: "Convolution" | |
bottom: "dense40_bn" | |
top: "dense40_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense40_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense40_conv1" | |
top: "dense40_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense40_conv1_scale" | |
type: "Scale" | |
bottom: "dense40_conv1" | |
top: "dense40_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense40_conv1_relu" | |
type: "ReLU" | |
bottom: "dense40_conv1" | |
top: "dense40_conv1" | |
} | |
layer { | |
name: "dense40_conv2" | |
type: "Convolution" | |
bottom: "dense40_conv1" | |
top: "dense40_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense40_concat" | |
type: "Concat" | |
bottom: "dense39_concat" | |
bottom: "dense40_conv2" | |
top: "dense40_concat" | |
} | |
layer { | |
name: "dense41_bn" | |
type: "BatchNorm" | |
bottom: "dense40_concat" | |
top: "dense41_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense41_scale" | |
type: "Scale" | |
bottom: "dense41_bn" | |
top: "dense41_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense41_relu" | |
type: "ReLU" | |
bottom: "dense41_bn" | |
top: "dense41_bn" | |
} | |
layer { | |
name: "dense41_conv1" | |
type: "Convolution" | |
bottom: "dense41_bn" | |
top: "dense41_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense41_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense41_conv1" | |
top: "dense41_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense41_conv1_scale" | |
type: "Scale" | |
bottom: "dense41_conv1" | |
top: "dense41_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense41_conv1_relu" | |
type: "ReLU" | |
bottom: "dense41_conv1" | |
top: "dense41_conv1" | |
} | |
layer { | |
name: "dense41_conv2" | |
type: "Convolution" | |
bottom: "dense41_conv1" | |
top: "dense41_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense41_concat" | |
type: "Concat" | |
bottom: "dense40_concat" | |
bottom: "dense41_conv2" | |
top: "dense41_concat" | |
} | |
layer { | |
name: "dense42_bn" | |
type: "BatchNorm" | |
bottom: "dense41_concat" | |
top: "dense42_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense42_scale" | |
type: "Scale" | |
bottom: "dense42_bn" | |
top: "dense42_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense42_relu" | |
type: "ReLU" | |
bottom: "dense42_bn" | |
top: "dense42_bn" | |
} | |
layer { | |
name: "dense42_conv1" | |
type: "Convolution" | |
bottom: "dense42_bn" | |
top: "dense42_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense42_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense42_conv1" | |
top: "dense42_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense42_conv1_scale" | |
type: "Scale" | |
bottom: "dense42_conv1" | |
top: "dense42_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense42_conv1_relu" | |
type: "ReLU" | |
bottom: "dense42_conv1" | |
top: "dense42_conv1" | |
} | |
layer { | |
name: "dense42_conv2" | |
type: "Convolution" | |
bottom: "dense42_conv1" | |
top: "dense42_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense42_concat" | |
type: "Concat" | |
bottom: "dense41_concat" | |
bottom: "dense42_conv2" | |
top: "dense42_concat" | |
} | |
layer { | |
name: "dense42_concat_bn" | |
type: "BatchNorm" | |
bottom: "dense42_concat" | |
top: "dense42_concat" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense42_concat_scale" | |
type: "Scale" | |
bottom: "dense42_concat" | |
top: "dense42_concat" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense42_concat_relu" | |
type: "ReLU" | |
bottom: "dense42_concat" | |
top: "dense42_concat" | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "dense42_concat" | |
top: "conv4" | |
convolution_param { | |
num_output: 512 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4" | |
top: "pool4" | |
pooling_param { | |
pool: AVE | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "dense43_bn" | |
type: "BatchNorm" | |
bottom: "pool4" | |
top: "dense43_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense43_scale" | |
type: "Scale" | |
bottom: "dense43_bn" | |
top: "dense43_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense43_relu" | |
type: "ReLU" | |
bottom: "dense43_bn" | |
top: "dense43_bn" | |
} | |
layer { | |
name: "dense43_conv1" | |
type: "Convolution" | |
bottom: "dense43_bn" | |
top: "dense43_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense43_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense43_conv1" | |
top: "dense43_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense43_conv1_scale" | |
type: "Scale" | |
bottom: "dense43_conv1" | |
top: "dense43_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense43_conv1_relu" | |
type: "ReLU" | |
bottom: "dense43_conv1" | |
top: "dense43_conv1" | |
} | |
layer { | |
name: "dense43_conv2" | |
type: "Convolution" | |
bottom: "dense43_conv1" | |
top: "dense43_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense43_concat" | |
type: "Concat" | |
bottom: "pool4" | |
bottom: "dense43_conv2" | |
top: "dense43_concat" | |
} | |
layer { | |
name: "dense44_bn" | |
type: "BatchNorm" | |
bottom: "dense43_concat" | |
top: "dense44_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense44_scale" | |
type: "Scale" | |
bottom: "dense44_bn" | |
top: "dense44_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense44_relu" | |
type: "ReLU" | |
bottom: "dense44_bn" | |
top: "dense44_bn" | |
} | |
layer { | |
name: "dense44_conv1" | |
type: "Convolution" | |
bottom: "dense44_bn" | |
top: "dense44_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense44_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense44_conv1" | |
top: "dense44_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense44_conv1_scale" | |
type: "Scale" | |
bottom: "dense44_conv1" | |
top: "dense44_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense44_conv1_relu" | |
type: "ReLU" | |
bottom: "dense44_conv1" | |
top: "dense44_conv1" | |
} | |
layer { | |
name: "dense44_conv2" | |
type: "Convolution" | |
bottom: "dense44_conv1" | |
top: "dense44_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense44_concat" | |
type: "Concat" | |
bottom: "dense43_concat" | |
bottom: "dense44_conv2" | |
top: "dense44_concat" | |
} | |
layer { | |
name: "dense45_bn" | |
type: "BatchNorm" | |
bottom: "dense44_concat" | |
top: "dense45_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense45_scale" | |
type: "Scale" | |
bottom: "dense45_bn" | |
top: "dense45_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense45_relu" | |
type: "ReLU" | |
bottom: "dense45_bn" | |
top: "dense45_bn" | |
} | |
layer { | |
name: "dense45_conv1" | |
type: "Convolution" | |
bottom: "dense45_bn" | |
top: "dense45_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense45_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense45_conv1" | |
top: "dense45_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense45_conv1_scale" | |
type: "Scale" | |
bottom: "dense45_conv1" | |
top: "dense45_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense45_conv1_relu" | |
type: "ReLU" | |
bottom: "dense45_conv1" | |
top: "dense45_conv1" | |
} | |
layer { | |
name: "dense45_conv2" | |
type: "Convolution" | |
bottom: "dense45_conv1" | |
top: "dense45_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense45_concat" | |
type: "Concat" | |
bottom: "dense44_concat" | |
bottom: "dense45_conv2" | |
top: "dense45_concat" | |
} | |
layer { | |
name: "dense46_bn" | |
type: "BatchNorm" | |
bottom: "dense45_concat" | |
top: "dense46_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense46_scale" | |
type: "Scale" | |
bottom: "dense46_bn" | |
top: "dense46_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense46_relu" | |
type: "ReLU" | |
bottom: "dense46_bn" | |
top: "dense46_bn" | |
} | |
layer { | |
name: "dense46_conv1" | |
type: "Convolution" | |
bottom: "dense46_bn" | |
top: "dense46_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense46_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense46_conv1" | |
top: "dense46_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense46_conv1_scale" | |
type: "Scale" | |
bottom: "dense46_conv1" | |
top: "dense46_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense46_conv1_relu" | |
type: "ReLU" | |
bottom: "dense46_conv1" | |
top: "dense46_conv1" | |
} | |
layer { | |
name: "dense46_conv2" | |
type: "Convolution" | |
bottom: "dense46_conv1" | |
top: "dense46_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense46_concat" | |
type: "Concat" | |
bottom: "dense45_concat" | |
bottom: "dense46_conv2" | |
top: "dense46_concat" | |
} | |
layer { | |
name: "dense47_bn" | |
type: "BatchNorm" | |
bottom: "dense46_concat" | |
top: "dense47_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense47_scale" | |
type: "Scale" | |
bottom: "dense47_bn" | |
top: "dense47_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense47_relu" | |
type: "ReLU" | |
bottom: "dense47_bn" | |
top: "dense47_bn" | |
} | |
layer { | |
name: "dense47_conv1" | |
type: "Convolution" | |
bottom: "dense47_bn" | |
top: "dense47_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense47_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense47_conv1" | |
top: "dense47_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense47_conv1_scale" | |
type: "Scale" | |
bottom: "dense47_conv1" | |
top: "dense47_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense47_conv1_relu" | |
type: "ReLU" | |
bottom: "dense47_conv1" | |
top: "dense47_conv1" | |
} | |
layer { | |
name: "dense47_conv2" | |
type: "Convolution" | |
bottom: "dense47_conv1" | |
top: "dense47_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense47_concat" | |
type: "Concat" | |
bottom: "dense46_concat" | |
bottom: "dense47_conv2" | |
top: "dense47_concat" | |
} | |
layer { | |
name: "dense48_bn" | |
type: "BatchNorm" | |
bottom: "dense47_concat" | |
top: "dense48_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense48_scale" | |
type: "Scale" | |
bottom: "dense48_bn" | |
top: "dense48_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense48_relu" | |
type: "ReLU" | |
bottom: "dense48_bn" | |
top: "dense48_bn" | |
} | |
layer { | |
name: "dense48_conv1" | |
type: "Convolution" | |
bottom: "dense48_bn" | |
top: "dense48_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense48_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense48_conv1" | |
top: "dense48_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense48_conv1_scale" | |
type: "Scale" | |
bottom: "dense48_conv1" | |
top: "dense48_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense48_conv1_relu" | |
type: "ReLU" | |
bottom: "dense48_conv1" | |
top: "dense48_conv1" | |
} | |
layer { | |
name: "dense48_conv2" | |
type: "Convolution" | |
bottom: "dense48_conv1" | |
top: "dense48_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense48_concat" | |
type: "Concat" | |
bottom: "dense47_concat" | |
bottom: "dense48_conv2" | |
top: "dense48_concat" | |
} | |
layer { | |
name: "dense49_bn" | |
type: "BatchNorm" | |
bottom: "dense48_concat" | |
top: "dense49_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense49_scale" | |
type: "Scale" | |
bottom: "dense49_bn" | |
top: "dense49_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense49_relu" | |
type: "ReLU" | |
bottom: "dense49_bn" | |
top: "dense49_bn" | |
} | |
layer { | |
name: "dense49_conv1" | |
type: "Convolution" | |
bottom: "dense49_bn" | |
top: "dense49_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense49_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense49_conv1" | |
top: "dense49_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense49_conv1_scale" | |
type: "Scale" | |
bottom: "dense49_conv1" | |
top: "dense49_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense49_conv1_relu" | |
type: "ReLU" | |
bottom: "dense49_conv1" | |
top: "dense49_conv1" | |
} | |
layer { | |
name: "dense49_conv2" | |
type: "Convolution" | |
bottom: "dense49_conv1" | |
top: "dense49_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense49_concat" | |
type: "Concat" | |
bottom: "dense48_concat" | |
bottom: "dense49_conv2" | |
top: "dense49_concat" | |
} | |
layer { | |
name: "dense50_bn" | |
type: "BatchNorm" | |
bottom: "dense49_concat" | |
top: "dense50_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense50_scale" | |
type: "Scale" | |
bottom: "dense50_bn" | |
top: "dense50_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense50_relu" | |
type: "ReLU" | |
bottom: "dense50_bn" | |
top: "dense50_bn" | |
} | |
layer { | |
name: "dense50_conv1" | |
type: "Convolution" | |
bottom: "dense50_bn" | |
top: "dense50_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense50_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense50_conv1" | |
top: "dense50_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense50_conv1_scale" | |
type: "Scale" | |
bottom: "dense50_conv1" | |
top: "dense50_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense50_conv1_relu" | |
type: "ReLU" | |
bottom: "dense50_conv1" | |
top: "dense50_conv1" | |
} | |
layer { | |
name: "dense50_conv2" | |
type: "Convolution" | |
bottom: "dense50_conv1" | |
top: "dense50_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense50_concat" | |
type: "Concat" | |
bottom: "dense49_concat" | |
bottom: "dense50_conv2" | |
top: "dense50_concat" | |
} | |
layer { | |
name: "dense51_bn" | |
type: "BatchNorm" | |
bottom: "dense50_concat" | |
top: "dense51_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense51_scale" | |
type: "Scale" | |
bottom: "dense51_bn" | |
top: "dense51_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense51_relu" | |
type: "ReLU" | |
bottom: "dense51_bn" | |
top: "dense51_bn" | |
} | |
layer { | |
name: "dense51_conv1" | |
type: "Convolution" | |
bottom: "dense51_bn" | |
top: "dense51_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense51_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense51_conv1" | |
top: "dense51_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense51_conv1_scale" | |
type: "Scale" | |
bottom: "dense51_conv1" | |
top: "dense51_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense51_conv1_relu" | |
type: "ReLU" | |
bottom: "dense51_conv1" | |
top: "dense51_conv1" | |
} | |
layer { | |
name: "dense51_conv2" | |
type: "Convolution" | |
bottom: "dense51_conv1" | |
top: "dense51_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense51_concat" | |
type: "Concat" | |
bottom: "dense50_concat" | |
bottom: "dense51_conv2" | |
top: "dense51_concat" | |
} | |
layer { | |
name: "dense52_bn" | |
type: "BatchNorm" | |
bottom: "dense51_concat" | |
top: "dense52_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense52_scale" | |
type: "Scale" | |
bottom: "dense52_bn" | |
top: "dense52_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense52_relu" | |
type: "ReLU" | |
bottom: "dense52_bn" | |
top: "dense52_bn" | |
} | |
layer { | |
name: "dense52_conv1" | |
type: "Convolution" | |
bottom: "dense52_bn" | |
top: "dense52_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense52_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense52_conv1" | |
top: "dense52_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense52_conv1_scale" | |
type: "Scale" | |
bottom: "dense52_conv1" | |
top: "dense52_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense52_conv1_relu" | |
type: "ReLU" | |
bottom: "dense52_conv1" | |
top: "dense52_conv1" | |
} | |
layer { | |
name: "dense52_conv2" | |
type: "Convolution" | |
bottom: "dense52_conv1" | |
top: "dense52_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense52_concat" | |
type: "Concat" | |
bottom: "dense51_concat" | |
bottom: "dense52_conv2" | |
top: "dense52_concat" | |
} | |
layer { | |
name: "dense53_bn" | |
type: "BatchNorm" | |
bottom: "dense52_concat" | |
top: "dense53_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense53_scale" | |
type: "Scale" | |
bottom: "dense53_bn" | |
top: "dense53_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense53_relu" | |
type: "ReLU" | |
bottom: "dense53_bn" | |
top: "dense53_bn" | |
} | |
layer { | |
name: "dense53_conv1" | |
type: "Convolution" | |
bottom: "dense53_bn" | |
top: "dense53_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense53_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense53_conv1" | |
top: "dense53_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense53_conv1_scale" | |
type: "Scale" | |
bottom: "dense53_conv1" | |
top: "dense53_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense53_conv1_relu" | |
type: "ReLU" | |
bottom: "dense53_conv1" | |
top: "dense53_conv1" | |
} | |
layer { | |
name: "dense53_conv2" | |
type: "Convolution" | |
bottom: "dense53_conv1" | |
top: "dense53_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense53_concat" | |
type: "Concat" | |
bottom: "dense52_concat" | |
bottom: "dense53_conv2" | |
top: "dense53_concat" | |
} | |
layer { | |
name: "dense54_bn" | |
type: "BatchNorm" | |
bottom: "dense53_concat" | |
top: "dense54_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense54_scale" | |
type: "Scale" | |
bottom: "dense54_bn" | |
top: "dense54_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense54_relu" | |
type: "ReLU" | |
bottom: "dense54_bn" | |
top: "dense54_bn" | |
} | |
layer { | |
name: "dense54_conv1" | |
type: "Convolution" | |
bottom: "dense54_bn" | |
top: "dense54_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense54_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense54_conv1" | |
top: "dense54_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense54_conv1_scale" | |
type: "Scale" | |
bottom: "dense54_conv1" | |
top: "dense54_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense54_conv1_relu" | |
type: "ReLU" | |
bottom: "dense54_conv1" | |
top: "dense54_conv1" | |
} | |
layer { | |
name: "dense54_conv2" | |
type: "Convolution" | |
bottom: "dense54_conv1" | |
top: "dense54_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense54_concat" | |
type: "Concat" | |
bottom: "dense53_concat" | |
bottom: "dense54_conv2" | |
top: "dense54_concat" | |
} | |
layer { | |
name: "dense55_bn" | |
type: "BatchNorm" | |
bottom: "dense54_concat" | |
top: "dense55_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense55_scale" | |
type: "Scale" | |
bottom: "dense55_bn" | |
top: "dense55_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense55_relu" | |
type: "ReLU" | |
bottom: "dense55_bn" | |
top: "dense55_bn" | |
} | |
layer { | |
name: "dense55_conv1" | |
type: "Convolution" | |
bottom: "dense55_bn" | |
top: "dense55_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense55_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense55_conv1" | |
top: "dense55_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense55_conv1_scale" | |
type: "Scale" | |
bottom: "dense55_conv1" | |
top: "dense55_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense55_conv1_relu" | |
type: "ReLU" | |
bottom: "dense55_conv1" | |
top: "dense55_conv1" | |
} | |
layer { | |
name: "dense55_conv2" | |
type: "Convolution" | |
bottom: "dense55_conv1" | |
top: "dense55_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense55_concat" | |
type: "Concat" | |
bottom: "dense54_concat" | |
bottom: "dense55_conv2" | |
top: "dense55_concat" | |
} | |
layer { | |
name: "dense56_bn" | |
type: "BatchNorm" | |
bottom: "dense55_concat" | |
top: "dense56_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense56_scale" | |
type: "Scale" | |
bottom: "dense56_bn" | |
top: "dense56_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense56_relu" | |
type: "ReLU" | |
bottom: "dense56_bn" | |
top: "dense56_bn" | |
} | |
layer { | |
name: "dense56_conv1" | |
type: "Convolution" | |
bottom: "dense56_bn" | |
top: "dense56_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense56_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense56_conv1" | |
top: "dense56_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense56_conv1_scale" | |
type: "Scale" | |
bottom: "dense56_conv1" | |
top: "dense56_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense56_conv1_relu" | |
type: "ReLU" | |
bottom: "dense56_conv1" | |
top: "dense56_conv1" | |
} | |
layer { | |
name: "dense56_conv2" | |
type: "Convolution" | |
bottom: "dense56_conv1" | |
top: "dense56_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense56_concat" | |
type: "Concat" | |
bottom: "dense55_concat" | |
bottom: "dense56_conv2" | |
top: "dense56_concat" | |
} | |
layer { | |
name: "dense57_bn" | |
type: "BatchNorm" | |
bottom: "dense56_concat" | |
top: "dense57_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense57_scale" | |
type: "Scale" | |
bottom: "dense57_bn" | |
top: "dense57_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense57_relu" | |
type: "ReLU" | |
bottom: "dense57_bn" | |
top: "dense57_bn" | |
} | |
layer { | |
name: "dense57_conv1" | |
type: "Convolution" | |
bottom: "dense57_bn" | |
top: "dense57_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense57_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense57_conv1" | |
top: "dense57_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense57_conv1_scale" | |
type: "Scale" | |
bottom: "dense57_conv1" | |
top: "dense57_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense57_conv1_relu" | |
type: "ReLU" | |
bottom: "dense57_conv1" | |
top: "dense57_conv1" | |
} | |
layer { | |
name: "dense57_conv2" | |
type: "Convolution" | |
bottom: "dense57_conv1" | |
top: "dense57_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense57_concat" | |
type: "Concat" | |
bottom: "dense56_concat" | |
bottom: "dense57_conv2" | |
top: "dense57_concat" | |
} | |
layer { | |
name: "dense58_bn" | |
type: "BatchNorm" | |
bottom: "dense57_concat" | |
top: "dense58_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense58_scale" | |
type: "Scale" | |
bottom: "dense58_bn" | |
top: "dense58_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense58_relu" | |
type: "ReLU" | |
bottom: "dense58_bn" | |
top: "dense58_bn" | |
} | |
layer { | |
name: "dense58_conv1" | |
type: "Convolution" | |
bottom: "dense58_bn" | |
top: "dense58_conv1" | |
convolution_param { | |
num_output: 128 | |
bias_term: false | |
kernel_size: 1 | |
} | |
} | |
layer { | |
name: "dense58_conv1_bn" | |
type: "BatchNorm" | |
bottom: "dense58_conv1" | |
top: "dense58_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense58_conv1_scale" | |
type: "Scale" | |
bottom: "dense58_conv1" | |
top: "dense58_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense58_conv1_relu" | |
type: "ReLU" | |
bottom: "dense58_conv1" | |
top: "dense58_conv1" | |
} | |
layer { | |
name: "dense58_conv2" | |
type: "Convolution" | |
bottom: "dense58_conv1" | |
top: "dense58_conv2" | |
convolution_param { | |
num_output: 32 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "dense58_concat" | |
type: "Concat" | |
bottom: "dense57_concat" | |
bottom: "dense58_conv2" | |
top: "dense58_concat" | |
} | |
layer { | |
name: "dense58_concat_bn" | |
type: "BatchNorm" | |
bottom: "dense58_concat" | |
top: "dense58_concat" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "dense58_concat_scale" | |
type: "Scale" | |
bottom: "dense58_concat" | |
top: "dense58_concat" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "dense58_concat_relu" | |
type: "ReLU" | |
bottom: "dense58_concat" | |
top: "dense58_concat" | |
} | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "dense58_concat" | |
top: "pool5" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "classifier" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "classifier" | |
convolution_param { | |
num_output: 1000 | |
kernel_size: 1 | |
} | |
} | |
layer { | |
bottom: "classifier" | |
top: "classifier_reshape" | |
name: "classifier_reshape" | |
type: "Reshape" | |
reshape_param { | |
shape { | |
dim: 0 | |
dim: 0 | |
} | |
} | |
} | |
layer { | |
name: "prob" | |
type: "Softmax" | |
bottom: "classifier_reshape" | |
top: "prob" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment