Created
August 12, 2012 19:31
-
-
Save dedan/3333991 to your computer and use it in GitHub Desktop.
python pca on leptograpsus data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sp sex index FL RW CL CW BD | |
B M 1 8.1 6.7 16.1 19.0 7.0 | |
B M 2 8.8 7.7 18.1 20.8 7.4 | |
B M 3 9.2 7.8 19.0 22.4 7.7 | |
B M 4 9.6 7.9 20.1 23.1 8.2 | |
B M 5 9.8 8.0 20.3 23.0 8.2 | |
B M 6 10.8 9.0 23.0 26.5 9.8 | |
B M 7 11.1 9.9 23.8 27.1 9.8 | |
B M 8 11.6 9.1 24.5 28.4 10.4 | |
B M 9 11.8 9.6 24.2 27.8 9.7 | |
B M 10 11.8 10.5 25.2 29.3 10.3 | |
B M 11 12.2 10.8 27.3 31.6 10.9 | |
B M 12 12.3 11.0 26.8 31.5 11.4 | |
B M 13 12.6 10.0 27.7 31.7 11.4 | |
B M 14 12.8 10.2 27.2 31.8 10.9 | |
B M 15 12.8 10.9 27.4 31.5 11.0 | |
B M 16 12.9 11.0 26.8 30.9 11.4 | |
B M 17 13.1 10.6 28.2 32.3 11.0 | |
B M 18 13.1 10.9 28.3 32.4 11.2 | |
B M 19 13.3 11.1 27.8 32.3 11.3 | |
B M 20 13.9 11.1 29.2 33.3 12.1 | |
B M 21 14.3 11.6 31.3 35.5 12.7 | |
B M 22 14.6 11.3 31.9 36.4 13.7 | |
B M 23 15.0 10.9 31.4 36.4 13.2 | |
B M 24 15.0 11.5 32.4 37.0 13.4 | |
B M 25 15.0 11.9 32.5 37.2 13.6 | |
B M 26 15.2 12.1 32.3 36.7 13.6 | |
B M 27 15.4 11.8 33.0 37.5 13.6 | |
B M 28 15.7 12.6 35.8 40.3 14.5 | |
B M 29 15.9 12.7 34.0 38.9 14.2 | |
B M 30 16.1 11.6 33.8 39.0 14.4 | |
B M 31 16.1 12.8 34.9 40.7 15.7 | |
B M 32 16.2 13.3 36.0 41.7 15.4 | |
B M 33 16.3 12.7 35.6 40.9 14.9 | |
B M 34 16.4 13.0 35.7 41.8 15.2 | |
B M 35 16.6 13.5 38.1 43.4 14.9 | |
B M 36 16.8 12.8 36.2 41.8 14.9 | |
B M 37 16.9 13.2 37.3 42.7 15.6 | |
B M 38 17.1 12.6 36.4 42.0 15.1 | |
B M 39 17.1 12.7 36.7 41.9 15.6 | |
B M 40 17.2 13.5 37.6 43.9 16.1 | |
B M 41 17.7 13.6 38.7 44.5 16.0 | |
B M 42 17.9 14.1 39.7 44.6 16.8 | |
B M 43 18.0 13.7 39.2 44.4 16.2 | |
B M 44 18.8 15.8 42.1 49.0 17.8 | |
B M 45 19.3 13.5 41.6 47.4 17.8 | |
B M 46 19.3 13.8 40.9 46.5 16.8 | |
B M 47 19.7 15.3 41.9 48.5 17.8 | |
B M 48 19.8 14.2 43.2 49.7 18.6 | |
B M 49 19.8 14.3 42.4 48.9 18.3 | |
B M 50 21.3 15.7 47.1 54.6 20.0 | |
B F 1 7.2 6.5 14.7 17.1 6.1 | |
B F 2 9.0 8.5 19.3 22.7 7.7 | |
B F 3 9.1 8.1 18.5 21.6 7.7 | |
B F 4 9.1 8.2 19.2 22.2 7.7 | |
B F 5 9.5 8.2 19.6 22.4 7.8 | |
B F 6 9.8 8.9 20.4 23.9 8.8 | |
B F 7 10.1 9.3 20.9 24.4 8.4 | |
B F 8 10.3 9.5 21.3 24.7 8.9 | |
B F 9 10.4 9.7 21.7 25.4 8.3 | |
B F 10 10.8 9.5 22.5 26.3 9.1 | |
B F 11 11.0 9.8 22.5 25.7 8.2 | |
B F 12 11.2 10.0 22.8 26.9 9.4 | |
B F 13 11.5 11.0 24.7 29.2 10.1 | |
B F 14 11.6 11.0 24.6 28.5 10.4 | |
B F 15 11.6 11.4 23.7 27.7 10.0 | |
B F 16 11.7 10.6 24.9 28.5 10.4 | |
B F 17 11.9 11.4 26.0 30.1 10.9 | |
B F 18 12.0 10.7 24.6 28.9 10.5 | |
B F 19 12.0 11.1 25.4 29.2 11.0 | |
B F 20 12.6 12.2 26.1 31.6 11.2 | |
B F 21 12.8 11.7 27.1 31.2 11.9 | |
B F 22 12.8 12.2 26.7 31.1 11.1 | |
B F 23 12.8 12.2 27.9 31.9 11.5 | |
B F 24 13.0 11.4 27.3 31.8 11.3 | |
B F 25 13.1 11.5 27.6 32.6 11.1 | |
B F 26 13.2 12.2 27.9 32.1 11.5 | |
B F 27 13.4 11.8 28.4 32.7 11.7 | |
B F 28 13.7 12.5 28.6 33.8 11.9 | |
B F 29 13.9 13.0 30.0 34.9 13.1 | |
B F 30 14.7 12.5 30.1 34.7 12.5 | |
B F 31 14.9 13.2 30.1 35.6 12.0 | |
B F 32 15.0 13.8 31.7 36.9 14.0 | |
B F 33 15.0 14.2 32.8 37.4 14.0 | |
B F 34 15.1 13.3 31.8 36.3 13.5 | |
B F 35 15.1 13.5 31.9 37.0 13.8 | |
B F 36 15.1 13.8 31.7 36.6 13.0 | |
B F 37 15.2 14.3 33.9 38.5 14.7 | |
B F 38 15.3 14.2 32.6 38.3 13.8 | |
B F 39 15.4 13.3 32.4 37.6 13.8 | |
B F 40 15.5 13.8 33.4 38.7 14.7 | |
B F 41 15.6 13.9 32.8 37.9 13.4 | |
B F 42 15.6 14.7 33.9 39.5 14.3 | |
B F 43 15.7 13.9 33.6 38.5 14.1 | |
B F 44 15.8 15.0 34.5 40.3 15.3 | |
B F 45 16.2 15.2 34.5 40.1 13.9 | |
B F 46 16.4 14.0 34.2 39.8 15.2 | |
B F 47 16.7 16.1 36.6 41.9 15.4 | |
B F 48 17.4 16.9 38.2 44.1 16.6 | |
B F 49 17.5 16.7 38.6 44.5 17.0 | |
B F 50 19.2 16.5 40.9 47.9 18.1 | |
O M 1 9.1 6.9 16.7 18.6 7.4 | |
O M 2 10.2 8.2 20.2 22.2 9.0 | |
O M 3 10.7 8.6 20.7 22.7 9.2 | |
O M 4 11.4 9.0 22.7 24.8 10.1 | |
O M 5 12.5 9.4 23.2 26.0 10.8 | |
O M 6 12.5 9.4 24.2 27.0 11.2 | |
O M 7 12.7 10.4 26.0 28.8 12.1 | |
O M 8 13.2 11.0 27.1 30.4 12.2 | |
O M 9 13.4 10.1 26.6 29.6 12.0 | |
O M 10 13.7 11.0 27.5 30.5 12.2 | |
O M 11 14.0 11.5 29.2 32.2 13.1 | |
O M 12 14.1 10.4 28.9 31.8 13.5 | |
O M 13 14.1 10.5 29.1 31.6 13.1 | |
O M 14 14.1 10.7 28.7 31.9 13.3 | |
O M 15 14.2 10.6 28.7 31.7 12.9 | |
O M 16 14.2 10.7 27.8 30.9 12.7 | |
O M 17 14.2 11.3 29.2 32.2 13.5 | |
O M 18 14.6 11.3 29.9 33.5 12.8 | |
O M 19 14.7 11.1 29.0 32.1 13.1 | |
O M 20 15.1 11.4 30.2 33.3 14.0 | |
O M 21 15.1 11.5 30.9 34.0 13.9 | |
O M 22 15.4 11.1 30.2 33.6 13.5 | |
O M 23 15.7 12.2 31.7 34.2 14.2 | |
O M 24 16.2 11.8 32.3 35.3 14.7 | |
O M 25 16.3 11.6 31.6 34.2 14.5 | |
O M 26 17.1 12.6 35.0 38.9 15.7 | |
O M 27 17.4 12.8 36.1 39.5 16.2 | |
O M 28 17.5 12.0 34.4 37.3 15.3 | |
O M 29 17.5 12.7 34.6 38.4 16.1 | |
O M 30 17.8 12.5 36.0 39.8 16.7 | |
O M 31 17.9 12.9 36.9 40.9 16.5 | |
O M 32 18.0 13.4 36.7 41.3 17.1 | |
O M 33 18.2 13.7 38.8 42.7 17.2 | |
O M 34 18.4 13.4 37.9 42.2 17.7 | |
O M 35 18.6 13.4 37.8 41.9 17.3 | |
O M 36 18.6 13.5 36.9 40.2 17.0 | |
O M 37 18.8 13.4 37.2 41.1 17.5 | |
O M 38 18.8 13.8 39.2 43.3 17.9 | |
O M 39 19.4 14.1 39.1 43.2 17.8 | |
O M 40 19.4 14.4 39.8 44.3 17.9 | |
O M 41 20.1 13.7 40.6 44.5 18.0 | |
O M 42 20.6 14.4 42.8 46.5 19.6 | |
O M 43 21.0 15.0 42.9 47.2 19.4 | |
O M 44 21.5 15.5 45.5 49.7 20.9 | |
O M 45 21.6 15.4 45.7 49.7 20.6 | |
O M 46 21.6 14.8 43.4 48.2 20.1 | |
O M 47 21.9 15.7 45.4 51.0 21.1 | |
O M 48 22.1 15.8 44.6 49.6 20.5 | |
O M 49 23.0 16.8 47.2 52.1 21.5 | |
O M 50 23.1 15.7 47.6 52.8 21.6 | |
O F 1 10.7 9.7 21.4 24.0 9.8 | |
O F 2 11.4 9.2 21.7 24.1 9.7 | |
O F 3 12.5 10.0 24.1 27.0 10.9 | |
O F 4 12.6 11.5 25.0 28.1 11.5 | |
O F 5 12.9 11.2 25.8 29.1 11.9 | |
O F 6 14.0 11.9 27.0 31.4 12.6 | |
O F 7 14.0 12.8 28.8 32.4 12.7 | |
O F 8 14.3 12.2 28.1 31.8 12.5 | |
O F 9 14.7 13.2 29.6 33.4 12.9 | |
O F 10 14.9 13.0 30.0 33.7 13.3 | |
O F 11 15.0 12.3 30.1 33.3 14.0 | |
O F 12 15.6 13.5 31.2 35.1 14.1 | |
O F 13 15.6 14.0 31.6 35.3 13.8 | |
O F 14 15.6 14.1 31.0 34.5 13.8 | |
O F 15 15.7 13.6 31.0 34.8 13.8 | |
O F 16 16.1 13.6 31.6 36.0 14.0 | |
O F 17 16.1 13.7 31.4 36.1 13.9 | |
O F 18 16.2 14.0 31.6 35.6 13.7 | |
O F 19 16.7 14.3 32.3 37.0 14.7 | |
O F 20 17.1 14.5 33.1 37.2 14.6 | |
O F 21 17.5 14.3 34.5 39.6 15.6 | |
O F 22 17.5 14.4 34.5 39.0 16.0 | |
O F 23 17.5 14.7 33.3 37.6 14.6 | |
O F 24 17.6 14.0 34.0 38.6 15.5 | |
O F 25 18.0 14.9 34.7 39.5 15.7 | |
O F 26 18.0 16.3 37.9 43.0 17.2 | |
O F 27 18.3 15.7 35.1 40.5 16.1 | |
O F 28 18.4 15.5 35.6 40.0 15.9 | |
O F 29 18.4 15.7 36.5 41.6 16.4 | |
O F 30 18.5 14.6 37.0 42.0 16.6 | |
O F 31 18.6 14.5 34.7 39.4 15.0 | |
O F 32 18.8 15.2 35.8 40.5 16.6 | |
O F 33 18.9 16.7 36.3 41.7 15.3 | |
O F 34 19.1 16.0 37.8 42.3 16.8 | |
O F 35 19.1 16.3 37.9 42.6 17.2 | |
O F 36 19.7 16.7 39.9 43.6 18.2 | |
O F 37 19.9 16.6 39.4 43.9 17.9 | |
O F 38 19.9 17.9 40.1 46.4 17.9 | |
O F 39 20.0 16.7 40.4 45.1 17.7 | |
O F 40 20.1 17.2 39.8 44.1 18.6 | |
O F 41 20.3 16.0 39.4 44.1 18.0 | |
O F 42 20.5 17.5 40.0 45.5 19.2 | |
O F 43 20.6 17.5 41.5 46.2 19.2 | |
O F 44 20.9 16.5 39.9 44.7 17.5 | |
O F 45 21.3 18.4 43.8 48.4 20.0 | |
O F 46 21.4 18.0 41.2 46.2 18.7 | |
O F 47 21.7 17.1 41.7 47.2 19.6 | |
O F 48 21.9 17.2 42.6 47.4 19.5 | |
O F 49 22.5 17.2 43.0 48.7 19.8 | |
O F 50 23.1 20.2 46.2 52.5 21.1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# encoding: utf-8 | |
import sys | |
import os | |
import numpy as np | |
import pylab as plt | |
from scipy import stats | |
with open('crabs.dat') as f: | |
lines = f.readlines() | |
orig_lines = [l.strip().split() for l in lines[1:]] | |
lines = [[float(val) for val in line[3:]] for line in orig_lines] | |
dat = np.array(lines) | |
dat = stats.stats.zscore(dat) | |
eigvals, eigvecs = np.linalg.eig(np.cov(dat.T)) | |
proj = np.dot(eigvecs, dat.T) | |
colors = {'OF': 'r', 'OM': 'b', 'BF': 'r', 'BM': 'b'} | |
plt.figure() | |
for i, p in enumerate(proj.T): | |
plt.plot(p[0], p[1], '.', color=colors[''.join(orig_lines[i][0:2])]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment