Skip to content

Instantly share code, notes, and snippets.

@defund
Last active April 5, 2022 22:23
Show Gist options
  • Save defund/a670ce45ae4050667de2de92a5891c58 to your computer and use it in GitHub Desktop.
Save defund/a670ce45ae4050667de2de92a5891c58 to your computer and use it in GitHub Desktop.
redpwnCTF 2020
from functools import reduce
from math import prod
from tqdm import tqdm
import random
import gmpy2
def rabin(n):
if n == 2: return True
if n%2 == 0: return False
r,d = 0,n-1
while d%2 == 0: r += 1; d //= 2
for k in range(1):
a = random.randint(2,n-2)
x = pow(a,d,n)
if x == 1 or x == n-1: continue
for i in range(r-1):
x = pow(x,2,n)
if x == n-1: continue
else: return False
return True
k = 941869
P = [5, 13, 19, 23, 37, 397]
L = reduce(gmpy2.lcm, map(lambda p: p-1, P))
while True:
k += 1
M = k*L + 1
Q = [M*(p-1) + 1 for p in P]
if all(map(gmpy2.is_prime, Q)):
break
Q = list(map(int, Q))
n = prod(Q)
print('k', k)
print('Q', Q, list(map(int.bit_length, Q)))
print('n', n, n.bit_length())
print(f'./ecgen --fp -n {n}')
for i in range(1000):
if rabin(n):
print(i)
def dlog(a, base, order, f):
l=[0]*len(f)
for i,(pi,ri) in enumerate(f):
for j in range(ri):
c=bsgs(base*(order//pi),(a-base*l[i])*(order//pi**(j+1)),(0,pi),operation='+')
l[i] += c*(pi**j)
from sage.arith.all import CRT_list
return CRT_list(l,[pi**ri for pi,ri in f])
Q = [1837470101, 5512410301, 8268615451, 10106085551, 16537230901, 181909539901]
n = 2546219544036917612349940381838413660553096101698112741559701
p = 0x0195a2dc6d72ec12adb2a30974903006d8e28d4debe9fe127483
a = 0x0195a2dc6d72ec12adb2a30974903006d8e26cb7298e1f127483
b = 0x0195a2dc6d72ec12adb2a30974902b8d242ef90b767e7e127483
E = EllipticCurve(GF(p), [a,b])
assert E.order() == n
def read(s):
params = eval(s.replace(':', ','))[:2]
return E(params)
# G = read(input('G: '))
# H = read(input('H: '))
G = '(900930215601169444799562853488996822803750434935519762580486 : 1437862562854832336539753568489027856889819688286102097925406 : 1)'
H = '(500463740668168523549332991632103121852346083045111145104802 : 1268713509142947882103270251122311761466400555565647889961807 : 1)'
# secret = randint(1,E.order()-1)
# G = E.gens()[0]
# H = secret*G
# print(secret)
print(dlog(H, G, n, Factorization([(q, 1) for q in Q])))
R.<d1,k1,d2,k2,d3,k3,d4,k4,g,e1,e2,e3,e4,n> = PolynomialRing(ZZ)
d = [0, d1, d2, d3, d4]
e = [0, e1, e2, e3, e4]
k = [0, k1, k2, k3, k4]
def W(i):
return d[i]*g*e[i] - k[i]*n
def G(i,j):
return k[i]*d[j]*e[j] - k[j]*d[i]*e[i]
exp = W(1)*W(2)*W(3)*W(4)
print(exp)
n = 23606413766185125262715665064098566623392366241549799634536224249606821166508227661740963059390510723969542207420674403866302781734490190584327801883726734032078963903132346089383414812961131951474870457122782912866128207079825120011396670079612200883368880755263795594045770557800307577612649185609143459990250705270899075372732462351203338356687954929562907624387508223669835198161500541223853908304758164434125791065298963775559151746919521768558386507634585806044506359628534349719576557511850094141412958204131051925016158924842149605538033982403051452611258604768375962306349429212807320398845497859144547996527
e1 = 4525378769631249566244977471897300614866560736266259975908397510012737494956566617381502438794014727854889718181911378152998641026929902118170421346949931286522194349443052417574441576358833971754953241812309251772026259915877917090213817244523040289167891599867320580181862721332605390261883096160062124032826906947020479111505769862994328817442655622791326614092270594159299823940068956115680704908939376540075590153580411903703101062677967582828934914868515341773539758028428871167827435637597669409923861761295261613203526142470432108663654597077567466133772066684681016873916660847339562150611606875182092076747
e2 = 10172735311139530699605801066001604371200661094358260342392004380609091599491445007621569572730528007213603532285433070714283212002659767339317913009735445913936839236136136317225848872060024826651469980094298505689620956131817386821110797264073358204216337754890530637685833810019492317120012785929280086664917654155804421781103769012386285484397833314578860517006477753670275972937399848570953454457594300181990814514260868465771475694027441647750408361573878741462372842574791467349786885013303504507258134982535903368406483033869397798769650628468865161839214573530007810862766821126984737250324234847589513058569
e3 = 2227060622231017112810183337871567667710669960386807798108316064846234792846864759847654302635488115451385882008160666716857009943700159083293350411903039563964249756463539812328540527896366502459538825055036253734211485128491340972560832697514492848834194085703098012472707942482910460449741522913386044654154046491053065661530251267448363456369149215363633902843311408750667917053390508638660435885059453366105512987332779316890388243159349290320804371506523364055394589040348799728812357961002300391287402897804354719101619793128058550667388155552628739463459259252191247115431112364476319460584549335194551842079
e4 = 9181198739883924674262577976574080839604033433089422736970738072462688908040351153438466304266985952969750956794586135273753050004215013974417810470681608130130489047507539176804082510852245411368681478259682031096252377598320002363387961411850851931035802345092191610135511904800337822534477599351098742654324305322262337437503115193360343414083931764469122224172424390209847262499640368362531535916015916278036286434131652956971303170132714895420317010320064070889097959403124401509672648853727890286757665544936418429561485912274366845641146542105108156247157759856869485926363831994924875752485708876235530600469
a = 896/2048
M = matrix([
[1, -n, 0, n^2, 0, 0, 0, -n^3, 0, 0, 0, 0, 0, 0, 0, n^4],
[0, e1, -e1, -e1*n, -e1, 0, e1*n, e1*n^2, -e1, 0, 0, 0, 0, 0, -e1*n^2, -e1*n^3],
[0, 0, e2, -e2*n, 0, e2*n, 0, e2*n^2, 0, e2*n, 0, 0, 0, -e2*n^2, 0, -e2*n^3],
[0, 0, 0, e1*e2, 0, -e1*e2, -e1*e2, -e1*e2*n, 0, -e1*e2, 0, e1*e2, 0, e1*e2*n, e1*e2*n, e1*e2*n^2],
[0, 0, 0, 0, e3, -e3*n, -e3*n, e3*n^2, 0, 0, 0, 0, -e3*n^2, 0, 0, -e3*n^3],
[0, 0, 0, 0, 0, e1*e3, 0, -e1*e3*n, 0, 0, e1*e3, 0, e1*e3*n, 0, e1*e3*n, e1*e3*n^2],
[0, 0, 0, 0, 0, 0, e2*e3, -e2*e3*n, 0, 0, -e2*e3, -e2*e3, e2*e3*n, e2*e3*n, 0, e2*e3*n^2],
[0, 0, 0, 0, 0, 0, 0, e1*e2*e3, 0, 0, 0, 0, -e1*e2*e3, -e1*e2*e3, -e1*e2*e3, -e1*e2*e3*n],
[0, 0, 0, 0, 0, 0, 0, 0, e4, -e4*n, 0, 0, e4*n^2, e4*n^2, e4*n^2, -e4*n^3],
[0, 0, 0, 0, 0, 0, 0, 0, 0, e1*e4, -e1*e4, -e1*e4, -e1*e4*n, -e1*e4*n, 0, e1*e4*n^2],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e2*e4, 0, -e2*e4*n, 0, -e2*e4*n, e2*e4*n^2],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e3*e4, 0, -e3*e4*n, -e3*e4*n, e3*e4*n^2],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e1*e2*e4, 0, 0, -e1*e2*e4*n],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e1*e3*e4, 0, -e1*e3*e4*n],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e2*e3*e4, -e2*e3*e4*n],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e1*e2*e3*e4],
])
D = diagonal_matrix(ZZ, map(round, [
n^2,
n^(3/2),
n^(a+2),
n^(1),
n^(a+2),
n^(a+3/2),
n^(a+3/2),
n^(1/2),
n^(a+2),
n^(a+3/2),
n^(2*a+2),
n^(2*a+2),
n^(a+1),
n^(a+1),
n^(a+1),
1
]))
L = M*D
B = L.LLL()
small = L.solve_left(B[0])
print('d1', gcd([small[i] for i in (1,3,5,7,9,12,13,15)]))
print('d2', gcd([small[i] for i in (2,3,6,7,10,12,14,15)]))
print('d3', gcd([small[i] for i in (4,5,6,7,11,13,14,15)]))
print('d4', gcd([small[i] for i in (8,9,10,11,12,13,14,15)]))
from Crypto.Util.number import *
from pwn import *
message = b'redpwnCTF is a cybersecurity competition hosted by the redpwn CTF team.'
t = remote('2020.redpwnc.tf', 31752)
# t = process(['python', 'server.py'])
p = int(t.recvline())
e = 65537
def sign(x):
m = long_to_bytes(x)
t.recvuntil('Exit\n')
t.sendline('1')
t.recvuntil('Message: ')
t.sendline(m)
t.recvline()
return int(t.recvline())
n = GCD(pow(sign(2), 2) - sign(4), pow(sign(3), 2) - sign(9))
q = n // p
assert isPrime(q)
d = inverse(e, (p-1)*(q-1))
s = pow(bytes_to_long(message), d, n)
t.recvuntil('Exit\n')
t.sendline('2')
t.sendline(message)
t.sendline(str(s))
t.interactive()
encrypted, y, n = tuple(map(eval, open('output')))
mask = ((1 << 400) - 1) << 0x1f0
garbage = y & mask
alpha_bar = y - garbage
F.<x> = PolynomialRing(Zmod(n))
pol = (2^0x1f0)*x + alpha_bar
pol = pol.monic()
root = pol.small_roots(X=2^400, beta=0.5)[0]
alpha = alpha_bar + (int(root) << 0x1f0)
assert n % alpha == 0
flag2 = int(root) ^^ (int(garbage) >> 0x1f0)
print(flag2.to_bytes(50, 'big'))
import ecdsa
from ecdsa.ecdsa import Public_key, Signature
from ecdsa.ellipticcurve import Point
import gmpy2
import hashlib
import itertools
import sys
from tqdm import tqdm
from pwn import *
def legendre(a, p):
return pow(a, (p - 1) // 2, p)
def tonelli(n, p):
assert legendre(n, p) == 1, "not a square (mod p)"
q = p - 1
s = 0
while q % 2 == 0:
q //= 2
s += 1
if s == 1:
return pow(n, (p + 1) // 4, p)
for z in range(2, p):
if p - 1 == legendre(z, p):
break
c = pow(z, q, p)
r = pow(n, (q + 1) // 2, p)
t = pow(n, q, p)
m = s
t2 = 0
while (t - 1) % p != 0:
t2 = (t * t) % p
for i in range(1, m):
if (t2 - 1) % p == 0:
break
t2 = (t2 * t2) % p
b = pow(c, 1 << (m - i - 1), p)
r = (r * b) % p
c = (b * b) % p
t = (t * c) % p
m = i
return r
C = ecdsa.NIST256p
G = C.generator
p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
a = -3
b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B
n = C.order
def point(x):
y = tonelli(((pow(x, 2)+a)*x+b) % p, p)
return Point(C.curve, x, y), Point(C.curve, x, -y)
def inv(x):
return gmpy2.invert(x, n)
m1 = b'a'
m2 = b'b'
h1 = int(hashlib.sha256(m1).hexdigest(), 16)
h2 = int(hashlib.sha256(m2).hexdigest(), 16)
# nc = process('./server.py')
nc = remote('2020.redpwnc.tf', 31452)
def recv():
nc.recvline()
Q = Public_key(G, Point(C.curve, *map(int, nc.recvline().split(b' '))))
nc.sendlineafter(': ', m1)
nc.sendlineafter(': ', m2)
return Q, list(map(int, nc.recvline().split(b' ')))
def send(x):
nc.recvline()
nc.sendline(str(x))
assert b'Correct' in nc.recvline()
out = nc.recvline()
if b'flag' in out:
print(out)
Q, vals = recv()
for r1, s1, s2 in itertools.permutations(vals):
if Q.verifies(h1, Signature(r1, s1)):
swap = False
break
elif Q.verifies(h2, Signature(r1, s1)):
t = m1; m1 = m2; m2 = t
t = h1; h1 = h2; h2 = t
swap = True
break
else:
print('none')
sys.exit()
possible = point(r1)
for diff in tqdm(range(-4095, 4095)):
for H1 in possible:
H2 = H1 + diff*G
r2 = H2.x()
if Q.verifies(h2, Signature(r2, s2)):
break
else:
continue
break
else:
print('error finding other r2')
sys.exit()
if swap:
diff = -diff
d = (diff + inv(s1)*h1 - inv(s2)*h2) * inv(inv(s2)*r2 - inv(s1)*r1) % n
assert d*G == Q.point
send(d)
k = inv(s1)*(h1 + r1*d) % n
def guess():
Q, vals = recv()
for s1 in vals:
for diff in range(-4095, 4096):
k1 = k+diff
H1 = k1*G
r1 = H1.x()
d = (s1*k1 - h1)*inv(r1) % n
if d*G == Q.point:
send(d)
return
d = (s1*k1 - h2)*inv(r1) % n
if d*G == Q.point:
send(d)
return
print('no guess found')
sys.exit()
for i in tqdm(range(99)):
guess()
nc.interactive()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment