Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Standalone whisper-diff command. Quick hack based on https://github.com/graphite-project/whisper/pull/30
# Copyright 2009-Present The Graphite Development Team
# Copyright 2008 Orbitz WorldWide
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This module is an implementation of the Whisper database API
# Here is the basic layout of a whisper data file
#
# File = Header,Data
# Header = Metadata,ArchiveInfo+
# Metadata = aggregationType,maxRetention,xFilesFactor,archiveCount
# ArchiveInfo = Offset,SecondsPerPoint,Points
# Data = Archive+
# Archive = Point+
# Point = timestamp,value
import os, struct, time, operator, itertools
import sys
import optparse
try:
import fcntl
CAN_LOCK = True
except ImportError:
CAN_LOCK = False
try:
import ctypes
import ctypes.util
CAN_FALLOCATE = True
except ImportError:
CAN_FALLOCATE = False
fallocate = None
if CAN_FALLOCATE:
libc_name = ctypes.util.find_library('c')
libc = ctypes.CDLL(libc_name)
c_off64_t = ctypes.c_int64
c_off_t = ctypes.c_int
try:
_fallocate = libc.posix_fallocate64
_fallocate.restype = ctypes.c_int
_fallocate.argtypes = [ctypes.c_int, c_off64_t, c_off64_t]
except AttributeError, e:
try:
_fallocate = libc.posix_fallocate
_fallocate.restype = ctypes.c_int
_fallocate.argtypes = [ctypes.c_int, c_off_t, c_off_t]
except AttributeError, e:
CAN_FALLOCATE = False
if CAN_FALLOCATE:
def _py_fallocate(fd, offset, len_):
res = _fallocate(fd.fileno(), offset, len_)
if res != 0:
raise IOError(res, 'fallocate')
fallocate = _py_fallocate
del libc
del libc_name
LOCK = False
CACHE_HEADERS = False
AUTOFLUSH = False
__headerCache = {}
longFormat = "!L"
longSize = struct.calcsize(longFormat)
floatFormat = "!f"
floatSize = struct.calcsize(floatFormat)
valueFormat = "!d"
valueSize = struct.calcsize(valueFormat)
pointFormat = "!Ld"
pointSize = struct.calcsize(pointFormat)
metadataFormat = "!2LfL"
metadataSize = struct.calcsize(metadataFormat)
archiveInfoFormat = "!3L"
archiveInfoSize = struct.calcsize(archiveInfoFormat)
aggregationTypeToMethod = dict({
1: 'average',
2: 'sum',
3: 'last',
4: 'max',
5: 'min'
})
aggregationMethodToType = dict([[v,k] for k,v in aggregationTypeToMethod.items()])
aggregationMethods = aggregationTypeToMethod.values()
debug = startBlock = endBlock = lambda *a,**k: None
UnitMultipliers = {
'seconds' : 1,
'minutes' : 60,
'hours' : 3600,
'days' : 86400,
'weeks' : 86400 * 7,
'years' : 86400 * 365
}
def getUnitString(s):
if 'seconds'.startswith(s): return 'seconds'
if 'minutes'.startswith(s): return 'minutes'
if 'hours'.startswith(s): return 'hours'
if 'days'.startswith(s): return 'days'
if 'weeks'.startswith(s): return 'weeks'
if 'years'.startswith(s): return 'years'
raise ValueError("Invalid unit '%s'" % s)
def parseRetentionDef(retentionDef):
import re
(precision, points) = retentionDef.strip().split(':')
if precision.isdigit():
precision = int(precision) * UnitMultipliers[getUnitString('s')]
else:
precision_re = re.compile(r'^(\d+)([a-z]+)$')
match = precision_re.match(precision)
if match:
precision = int(match.group(1)) * UnitMultipliers[getUnitString(match.group(2))]
else:
raise ValueError("Invalid precision specification '%s'" % precision)
if points.isdigit():
points = int(points)
else:
points_re = re.compile(r'^(\d+)([a-z]+)$')
match = points_re.match(points)
if match:
points = int(match.group(1)) * UnitMultipliers[getUnitString(match.group(2))] / precision
else:
raise ValueError("Invalid retention specification '%s'" % points)
return (precision, points)
class WhisperException(Exception):
"""Base class for whisper exceptions."""
class InvalidConfiguration(WhisperException):
"""Invalid configuration."""
class InvalidAggregationMethod(WhisperException):
"""Invalid aggregation method."""
class InvalidTimeInterval(WhisperException):
"""Invalid time interval."""
class TimestampNotCovered(WhisperException):
"""Timestamp not covered by any archives in this database."""
class CorruptWhisperFile(WhisperException):
def __init__(self, error, path):
Exception.__init__(self, error)
self.error = error
self.path = path
def __repr__(self):
return "<CorruptWhisperFile[%s] %s>" % (self.path, self.error)
def __str__(self):
return "%s (%s)" % (self.error, self.path)
def enableDebug():
global open, debug, startBlock, endBlock
class open(file):
def __init__(self,*args,**kwargs):
file.__init__(self,*args,**kwargs)
self.writeCount = 0
self.readCount = 0
def write(self,data):
self.writeCount += 1
debug('WRITE %d bytes #%d' % (len(data),self.writeCount))
return file.write(self,data)
def read(self,bytes):
self.readCount += 1
debug('READ %d bytes #%d' % (bytes,self.readCount))
return file.read(self,bytes)
def debug(message):
print 'DEBUG :: %s' % message
__timingBlocks = {}
def startBlock(name):
__timingBlocks[name] = time.time()
def endBlock(name):
debug("%s took %.5f seconds" % (name,time.time() - __timingBlocks.pop(name)))
def __readHeader(fh):
info = __headerCache.get(fh.name)
if info:
return info
originalOffset = fh.tell()
fh.seek(0)
packedMetadata = fh.read(metadataSize)
try:
(aggregationType,maxRetention,xff,archiveCount) = struct.unpack(metadataFormat,packedMetadata)
except:
raise CorruptWhisperFile("Unable to read header", fh.name)
archives = []
for i in xrange(archiveCount):
packedArchiveInfo = fh.read(archiveInfoSize)
try:
(offset,secondsPerPoint,points) = struct.unpack(archiveInfoFormat,packedArchiveInfo)
except:
raise CorruptWhisperFile("Unable to read archive%d metadata" % i, fh.name)
archiveInfo = {
'offset' : offset,
'secondsPerPoint' : secondsPerPoint,
'points' : points,
'retention' : secondsPerPoint * points,
'size' : points * pointSize,
}
archives.append(archiveInfo)
fh.seek(originalOffset)
info = {
'aggregationMethod' : aggregationTypeToMethod.get(aggregationType, 'average'),
'maxRetention' : maxRetention,
'xFilesFactor' : xff,
'archives' : archives,
}
if CACHE_HEADERS:
__headerCache[fh.name] = info
return info
def setAggregationMethod(path, aggregationMethod):
"""setAggregationMethod(path,aggregationMethod)
path is a string
aggregationMethod specifies the method to use when propogating data (see ``whisper.aggregationMethods``)
"""
fh = None
try:
fh = open(path,'r+b')
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
packedMetadata = fh.read(metadataSize)
try:
(aggregationType,maxRetention,xff,archiveCount) = struct.unpack(metadataFormat,packedMetadata)
except:
raise CorruptWhisperFile("Unable to read header", fh.name)
try:
newAggregationType = struct.pack( longFormat, aggregationMethodToType[aggregationMethod] )
except KeyError:
raise InvalidAggregationMethod("Unrecognized aggregation method: %s" %
aggregationMethod)
fh.seek(0)
fh.write(newAggregationType)
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
if CACHE_HEADERS and fh.name in __headerCache:
del __headerCache[fh.name]
finally:
if fh:
fh.close()
return aggregationTypeToMethod.get(aggregationType, 'average')
def validateArchiveList(archiveList):
""" Validates an archiveList.
An ArchiveList must:
1. Have at least one archive config. Example: (60, 86400)
2. No archive may be a duplicate of another.
3. Higher precision archives' precision must evenly divide all lower precision archives' precision.
4. Lower precision archives must cover larger time intervals than higher precision archives.
5. Each archive must have at least enough points to consolidate to the next archive
Returns True or False
"""
if not archiveList:
raise InvalidConfiguration("You must specify at least one archive configuration!")
archiveList.sort(key=lambda a: a[0]) #sort by precision (secondsPerPoint)
for i,archive in enumerate(archiveList):
if i == len(archiveList) - 1:
break
nextArchive = archiveList[i+1]
if not archive[0] < nextArchive[0]:
raise InvalidConfiguration("A Whisper database may not configured having"
"two archives with the same precision (archive%d: %s, archive%d: %s)" %
(i, archive, i + 1, nextArchive))
if nextArchive[0] % archive[0] != 0:
raise InvalidConfiguration("Higher precision archives' precision "
"must evenly divide all lower precision archives' precision "
"(archive%d: %s, archive%d: %s)" %
(i, archive[0], i + 1, nextArchive[0]))
retention = archive[0] * archive[1]
nextRetention = nextArchive[0] * nextArchive[1]
if not nextRetention > retention:
raise InvalidConfiguration("Lower precision archives must cover "
"larger time intervals than higher precision archives "
"(archive%d: %s seconds, archive%d: %s seconds)" %
(i, retention, i + 1, nextRetention))
archivePoints = archive[1]
pointsPerConsolidation = nextArchive[0] / archive[0]
if not archivePoints >= pointsPerConsolidation:
raise InvalidConfiguration("Each archive must have at least enough points "
"to consolidate to the next archive (archive%d consolidates %d of "
"archive%d's points but it has only %d total points)" %
(i + 1, pointsPerConsolidation, i, archivePoints))
def create(path,archiveList,xFilesFactor=None,aggregationMethod=None,sparse=False,useFallocate=False):
"""create(path,archiveList,xFilesFactor=0.5,aggregationMethod='average')
path is a string
archiveList is a list of archives, each of which is of the form (secondsPerPoint,numberOfPoints)
xFilesFactor specifies the fraction of data points in a propagation interval that must have known values for a propagation to occur
aggregationMethod specifies the function to use when propogating data (see ``whisper.aggregationMethods``)
"""
# Set default params
if xFilesFactor is None:
xFilesFactor = 0.5
if aggregationMethod is None:
aggregationMethod = 'average'
#Validate archive configurations...
validateArchiveList(archiveList)
#Looks good, now we create the file and write the header
if os.path.exists(path):
raise InvalidConfiguration("File %s already exists!" % path)
fh = None
try:
fh = open(path,'wb')
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
aggregationType = struct.pack( longFormat, aggregationMethodToType.get(aggregationMethod, 1) )
oldest = max([secondsPerPoint * points for secondsPerPoint,points in archiveList])
maxRetention = struct.pack( longFormat, oldest )
xFilesFactor = struct.pack( floatFormat, float(xFilesFactor) )
archiveCount = struct.pack(longFormat, len(archiveList))
packedMetadata = aggregationType + maxRetention + xFilesFactor + archiveCount
fh.write(packedMetadata)
headerSize = metadataSize + (archiveInfoSize * len(archiveList))
archiveOffsetPointer = headerSize
for secondsPerPoint,points in archiveList:
archiveInfo = struct.pack(archiveInfoFormat, archiveOffsetPointer, secondsPerPoint, points)
fh.write(archiveInfo)
archiveOffsetPointer += (points * pointSize)
#If configured to use fallocate and capable of fallocate use that, else
#attempt sparse if configure or zero pre-allocate if sparse isn't configured.
if CAN_FALLOCATE and useFallocate:
remaining = archiveOffsetPointer - headerSize
fallocate(fh, headerSize, remaining)
elif sparse:
fh.seek(archiveOffsetPointer - 1)
fh.write('\x00')
else:
remaining = archiveOffsetPointer - headerSize
chunksize = 16384
zeroes = '\x00' * chunksize
while remaining > chunksize:
fh.write(zeroes)
remaining -= chunksize
fh.write(zeroes[:remaining])
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
finally:
if fh:
fh.close()
def aggregate(aggregationMethod, knownValues):
if aggregationMethod == 'average':
return float(sum(knownValues)) / float(len(knownValues))
elif aggregationMethod == 'sum':
return float(sum(knownValues))
elif aggregationMethod == 'last':
return knownValues[len(knownValues)-1]
elif aggregationMethod == 'max':
return max(knownValues)
elif aggregationMethod == 'min':
return min(knownValues)
else:
raise InvalidAggregationMethod("Unrecognized aggregation method %s" %
aggregationMethod)
def __propagate(fh,header,timestamp,higher,lower):
aggregationMethod = header['aggregationMethod']
xff = header['xFilesFactor']
lowerIntervalStart = timestamp - (timestamp % lower['secondsPerPoint'])
lowerIntervalEnd = lowerIntervalStart + lower['secondsPerPoint']
fh.seek(higher['offset'])
packedPoint = fh.read(pointSize)
(higherBaseInterval,higherBaseValue) = struct.unpack(pointFormat,packedPoint)
if higherBaseInterval == 0:
higherFirstOffset = higher['offset']
else:
timeDistance = lowerIntervalStart - higherBaseInterval
pointDistance = timeDistance / higher['secondsPerPoint']
byteDistance = pointDistance * pointSize
higherFirstOffset = higher['offset'] + (byteDistance % higher['size'])
higherPoints = lower['secondsPerPoint'] / higher['secondsPerPoint']
higherSize = higherPoints * pointSize
relativeFirstOffset = higherFirstOffset - higher['offset']
relativeLastOffset = (relativeFirstOffset + higherSize) % higher['size']
higherLastOffset = relativeLastOffset + higher['offset']
fh.seek(higherFirstOffset)
if higherFirstOffset < higherLastOffset: #we don't wrap the archive
seriesString = fh.read(higherLastOffset - higherFirstOffset)
else: #We do wrap the archive
higherEnd = higher['offset'] + higher['size']
seriesString = fh.read(higherEnd - higherFirstOffset)
fh.seek(higher['offset'])
seriesString += fh.read(higherLastOffset - higher['offset'])
#Now we unpack the series data we just read
byteOrder,pointTypes = pointFormat[0],pointFormat[1:]
points = len(seriesString) / pointSize
seriesFormat = byteOrder + (pointTypes * points)
unpackedSeries = struct.unpack(seriesFormat, seriesString)
#And finally we construct a list of values
neighborValues = [None] * points
currentInterval = lowerIntervalStart
step = higher['secondsPerPoint']
for i in xrange(0,len(unpackedSeries),2):
pointTime = unpackedSeries[i]
if pointTime == currentInterval:
neighborValues[i/2] = unpackedSeries[i+1]
currentInterval += step
#Propagate aggregateValue to propagate from neighborValues if we have enough known points
knownValues = [v for v in neighborValues if v is not None]
if not knownValues:
return False
knownPercent = float(len(knownValues)) / float(len(neighborValues))
if knownPercent >= xff: #we have enough data to propagate a value!
aggregateValue = aggregate(aggregationMethod, knownValues)
myPackedPoint = struct.pack(pointFormat,lowerIntervalStart,aggregateValue)
fh.seek(lower['offset'])
packedPoint = fh.read(pointSize)
(lowerBaseInterval,lowerBaseValue) = struct.unpack(pointFormat,packedPoint)
if lowerBaseInterval == 0: #First propagated update to this lower archive
fh.seek(lower['offset'])
fh.write(myPackedPoint)
else: #Not our first propagated update to this lower archive
timeDistance = lowerIntervalStart - lowerBaseInterval
pointDistance = timeDistance / lower['secondsPerPoint']
byteDistance = pointDistance * pointSize
lowerOffset = lower['offset'] + (byteDistance % lower['size'])
fh.seek(lowerOffset)
fh.write(myPackedPoint)
return True
else:
return False
def update(path,value,timestamp=None):
"""update(path,value,timestamp=None)
path is a string
value is a float
timestamp is either an int or float
"""
value = float(value)
fh = None
try:
fh = open(path,'r+b')
return file_update(fh, value, timestamp)
finally:
if fh:
fh.close()
def file_update(fh, value, timestamp):
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
header = __readHeader(fh)
now = int( time.time() )
if timestamp is None:
timestamp = now
timestamp = int(timestamp)
diff = now - timestamp
if not ((diff < header['maxRetention']) and diff >= 0):
raise TimestampNotCovered("Timestamp not covered by any archives in "
"this database.")
for i,archive in enumerate(header['archives']): #Find the highest-precision archive that covers timestamp
if archive['retention'] < diff: continue
lowerArchives = header['archives'][i+1:] #We'll pass on the update to these lower precision archives later
break
#First we update the highest-precision archive
myInterval = timestamp - (timestamp % archive['secondsPerPoint'])
myPackedPoint = struct.pack(pointFormat,myInterval,value)
fh.seek(archive['offset'])
packedPoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedPoint)
if baseInterval == 0: #This file's first update
fh.seek(archive['offset'])
fh.write(myPackedPoint)
baseInterval,baseValue = myInterval,value
else: #Not our first update
timeDistance = myInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
myOffset = archive['offset'] + (byteDistance % archive['size'])
fh.seek(myOffset)
fh.write(myPackedPoint)
#Now we propagate the update to lower-precision archives
higher = archive
for lower in lowerArchives:
if not __propagate(fh, header, myInterval, higher, lower):
break
higher = lower
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
def update_many(path,points):
"""update_many(path,points)
path is a string
points is a list of (timestamp,value) points
"""
if not points: return
points = [ (int(t),float(v)) for (t,v) in points]
points.sort(key=lambda p: p[0],reverse=True) #order points by timestamp, newest first
fh = None
try:
fh = open(path,'r+b')
return file_update_many(fh, points)
finally:
if fh:
fh.close()
def file_update_many(fh, points):
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
header = __readHeader(fh)
now = int( time.time() )
archives = iter( header['archives'] )
currentArchive = archives.next()
currentPoints = []
for point in points:
age = now - point[0]
while currentArchive['retention'] < age: #we can't fit any more points in this archive
if currentPoints: #commit all the points we've found that it can fit
currentPoints.reverse() #put points in chronological order
__archive_update_many(fh,header,currentArchive,currentPoints)
currentPoints = []
try:
currentArchive = archives.next()
except StopIteration:
currentArchive = None
break
if not currentArchive:
break #drop remaining points that don't fit in the database
currentPoints.append(point)
if currentArchive and currentPoints: #don't forget to commit after we've checked all the archives
currentPoints.reverse()
__archive_update_many(fh,header,currentArchive,currentPoints)
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
def __archive_update_many(fh,header,archive,points):
step = archive['secondsPerPoint']
alignedPoints = [ (timestamp - (timestamp % step), value)
for (timestamp,value) in points ]
alignedPoints = dict(alignedPoints).items() # Take the last val of duplicates
#Create a packed string for each contiguous sequence of points
packedStrings = []
previousInterval = None
currentString = ""
for (interval,value) in alignedPoints:
if (not previousInterval) or (interval == previousInterval + step):
currentString += struct.pack(pointFormat,interval,value)
previousInterval = interval
else:
numberOfPoints = len(currentString) / pointSize
startInterval = previousInterval - (step * (numberOfPoints-1))
packedStrings.append( (startInterval,currentString) )
currentString = struct.pack(pointFormat,interval,value)
previousInterval = interval
if currentString:
numberOfPoints = len(currentString) / pointSize
startInterval = previousInterval - (step * (numberOfPoints-1))
packedStrings.append( (startInterval,currentString) )
#Read base point and determine where our writes will start
fh.seek(archive['offset'])
packedBasePoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedBasePoint)
if baseInterval == 0: #This file's first update
baseInterval = packedStrings[0][0] #use our first string as the base, so we start at the start
#Write all of our packed strings in locations determined by the baseInterval
for (interval,packedString) in packedStrings:
timeDistance = interval - baseInterval
pointDistance = timeDistance / step
byteDistance = pointDistance * pointSize
myOffset = archive['offset'] + (byteDistance % archive['size'])
fh.seek(myOffset)
archiveEnd = archive['offset'] + archive['size']
bytesBeyond = (myOffset + len(packedString)) - archiveEnd
if bytesBeyond > 0:
fh.write( packedString[:-bytesBeyond] )
assert fh.tell() == archiveEnd, "archiveEnd=%d fh.tell=%d bytesBeyond=%d len(packedString)=%d" % (archiveEnd,fh.tell(),bytesBeyond,len(packedString))
fh.seek( archive['offset'] )
fh.write( packedString[-bytesBeyond:] ) #safe because it can't exceed the archive (retention checking logic above)
else:
fh.write(packedString)
#Now we propagate the updates to lower-precision archives
higher = archive
lowerArchives = [arc for arc in header['archives'] if arc['secondsPerPoint'] > archive['secondsPerPoint']]
for lower in lowerArchives:
fit = lambda i: i - (i % lower['secondsPerPoint'])
lowerIntervals = [fit(p[0]) for p in alignedPoints]
uniqueLowerIntervals = set(lowerIntervals)
propagateFurther = False
for interval in uniqueLowerIntervals:
if __propagate(fh, header, interval, higher, lower):
propagateFurther = True
if not propagateFurther:
break
higher = lower
def info(path):
"""info(path)
path is a string
"""
fh = None
try:
fh = open(path,'rb')
return __readHeader(fh)
finally:
if fh:
fh.close()
return None
def fetch(path,fromTime,untilTime=None):
"""fetch(path,fromTime,untilTime=None)
path is a string
fromTime is an epoch time
untilTime is also an epoch time, but defaults to now.
Returns a tuple of (timeInfo, valueList)
where timeInfo is itself a tuple of (fromTime, untilTime, step)
Returns None if no data can be returned
"""
fh = None
try:
fh = open(path,'rb')
return file_fetch(fh, fromTime, untilTime)
finally:
if fh:
fh.close()
def file_fetch(fh, fromTime, untilTime):
header = __readHeader(fh)
now = int( time.time() )
if untilTime is None:
untilTime = now
fromTime = int(fromTime)
untilTime = int(untilTime)
# Here we try and be flexible and return as much data as we can.
# If the range of data is from too far in the past or fully in the future, we
# return nothing
if (fromTime > untilTime):
raise InvalidTimeInterval("Invalid time interval: from time '%s' is after until time '%s'" % (fromTime, untilTime))
oldestTime = now - header['maxRetention']
# Range is in the future
if fromTime > now:
return None
# Range is beyond retention
if untilTime < oldestTime:
return None
# Range requested is partially beyond retention, adjust
if fromTime < oldestTime:
fromTime = oldestTime
# Range is partially in the future, adjust
if untilTime > now:
untilTime = now
diff = now - fromTime
for archive in header['archives']:
if archive['retention'] >= diff:
break
return __archive_fetch(fh, archive, fromTime, untilTime)
def __archive_fetch(fh, archive, fromTime, untilTime):
"""
Fetch data from a single archive. Note that checks for validity of the time
period requested happen above this level so it's possible to wrap around the
archive on a read and request data older than the archive's retention
"""
fromInterval = int( fromTime - (fromTime % archive['secondsPerPoint']) ) + archive['secondsPerPoint']
untilInterval = int( untilTime - (untilTime % archive['secondsPerPoint']) ) + archive['secondsPerPoint']
fh.seek(archive['offset'])
packedPoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedPoint)
if baseInterval == 0:
step = archive['secondsPerPoint']
points = (untilInterval - fromInterval) / step
timeInfo = (fromInterval,untilInterval,step)
valueList = [None] * points
return (timeInfo,valueList)
#Determine fromOffset
timeDistance = fromInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
fromOffset = archive['offset'] + (byteDistance % archive['size'])
#Determine untilOffset
timeDistance = untilInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
untilOffset = archive['offset'] + (byteDistance % archive['size'])
#Read all the points in the interval
fh.seek(fromOffset)
if fromOffset < untilOffset: #If we don't wrap around the archive
seriesString = fh.read(untilOffset - fromOffset)
else: #We do wrap around the archive, so we need two reads
archiveEnd = archive['offset'] + archive['size']
seriesString = fh.read(archiveEnd - fromOffset)
fh.seek(archive['offset'])
seriesString += fh.read(untilOffset - archive['offset'])
#Now we unpack the series data we just read (anything faster than unpack?)
byteOrder,pointTypes = pointFormat[0],pointFormat[1:]
points = len(seriesString) / pointSize
seriesFormat = byteOrder + (pointTypes * points)
unpackedSeries = struct.unpack(seriesFormat, seriesString)
#And finally we construct a list of values (optimize this!)
valueList = [None] * points #pre-allocate entire list for speed
currentInterval = fromInterval
step = archive['secondsPerPoint']
for i in xrange(0,len(unpackedSeries),2):
pointTime = unpackedSeries[i]
if pointTime == currentInterval:
pointValue = unpackedSeries[i+1]
valueList[i/2] = pointValue #in-place reassignment is faster than append()
currentInterval += step
timeInfo = (fromInterval,untilInterval,step)
return (timeInfo,valueList)
def merge(path_from, path_to):
""" Merges the data from one whisper file into another. Each file must have
the same archive configuration
"""
fh_from = open(path_from)
fh_to = open(path_to)
return file_merge(fh_from, fh_to)
def file_merge(fh_from, fh_to):
headerFrom = __readHeader(fh_from)
headerTo = __readHeader(fh_to)
if headerFrom['archives'] != headerTo['archives']:
raise NotImplementedError("%s and %s archive configurations are unalike. " \
"Resize the input before merging" % (fh_from.name, fh_to.name))
archives = headerFrom['archives']
archives.sort(key=operator.itemgetter('retention'))
now = int(time.time())
untilTime = now
for archive in archives:
fromTime = now - archive['retention']
(timeInfo, values) = __fetch_archive(from_fh, archive, path_from, fromTime, untilTime)
(start, end, archive_step) = timeInfo
pointsToWrite = list(itertools.ifilter(
lambda points: points[1] is not None,
itertools.izip(xrange(start, end, archive_step), values)))
__archive_update_many(to_fh, archive, pointsToWrite)
untilTime = fromTime
def diff(path_from, path_to, ignore_empty = False):
""" Compare two whisper databases. Each file must have the same archive configuration """
fh_from = open(path_from, 'rb')
fh_to = open(path_to, 'rb')
diffs = file_diff(fh_from, fh_to, ignore_empty)
fh_to.close()
fh_from.close()
return diffs
def file_diff(fh_from, fh_to, ignore_empty = False):
headerFrom = __readHeader(fh_from)
headerTo = __readHeader(fh_to)
if headerFrom['archives'] != headerTo['archives']:
# TODO: Add specific whisper-resize commands to right size things
raise NotImplementedError("%s and %s archive configurations are unalike. " \
"Resize the input before diffing" % (fh_from.name, fh_to.name))
archives = headerFrom['archives']
archives.sort(key=operator.itemgetter('retention'))
archive_diffs = []
now = int(time.time())
untilTime = now
for archive_number, archive in enumerate(archives):
diffs = []
startTime = now - archive['retention']
(fromTimeInfo, fromValues) = __archive_fetch(fh_from, archive, startTime, untilTime)
(toTimeInfo, toValues) = __archive_fetch(fh_to, archive, startTime, untilTime)
(start, end, archive_step) = ( min(fromTimeInfo[0],toTimeInfo[0]), max(fromTimeInfo[1],toTimeInfo[1]), min(fromTimeInfo[2],toTimeInfo[2]) )
points = map(lambda s: (s * archive_step + start,fromValues[s],toValues[s]), range(0,(end - start) / archive_step))
if ignore_empty:
points = [p for p in points if p[1] != None and p[2] != None]
else:
points = [p for p in points if p[1] != None or p[2] != None]
diffs = [p for p in points if p[1] != p[2]]
archive_diffs.append( (archive_number, diffs, points.__len__()) )
untilTime = startTime
return archive_diffs
def print_diffs(diffs,pretty=True,headers=True):
if pretty:
h = "%7s %11s %13s %13s\n"
f = "%7s %11d %13s %13s\n"
else:
h = "%s %s %s %s\n"
f = "%s %d %s %s\n"
if headers:
sys.stdout.write(h%('archive','timestamp','value_a','value_b'))
for archive, points, total in diffs:
count = count=points.__len__()
if pretty:
sys.stdout.write('Archive %d (%d of %d datapoints differ)\n'%(archive,points.__len__(),total))
sys.stdout.write(h%('','timestamp','value_a','value_b'))
for p in points:
if pretty:
sys.stdout.write(f%('',p[0],p[1],p[2]))
else:
sys.stdout.write(f%(archive,p[0],p[1],p[2]))
def print_summary(diffs,pretty=True,headers=True):
if pretty:
f = "%7s %9s %9s\n"
else:
f = "%s %s %s\n"
if headers:
sys.stdout.write(f%('archive','total','differing'))
for archive, points, total in diffs:
sys.stdout.write(f%(archive,total,points.__len__()))
def main():
option_parser = optparse.OptionParser(usage='''%prog [options] path_a path_b''')
option_parser.add_option('--summary', default=False, action='store_true',
help="show summary of differences")
option_parser.add_option('--ignore-empty', default=False, action='store_true',
help="skip comparison if either value is undefined")
option_parser.add_option('--columns', default=False, action='store_true',
help="print output in simple columns")
option_parser.add_option('--no-headers', default=False, action='store_true',
help="do not print column headers")
(options, args) = option_parser.parse_args()
if len(args) != 2:
option_parser.print_help()
sys.exit(1)
(path_a,path_b) = args[0::1]
archive_diffs = diff(path_a,path_b,ignore_empty=options.ignore_empty)
if options.summary:
print_summary(archive_diffs,pretty=(not options.columns),headers=(not options.no_headers))
else:
print_diffs(archive_diffs,pretty=(not options.columns),headers=(not options.no_headers))
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment