Skip to content

Instantly share code, notes, and snippets.

Denny Britz dennybritz

Block or report user

Report or block dennybritz

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View wp_2017_full_width.css
@media screen and (min-width: 48em) {
#content > .wrap {
max-width: 100%
#content #primary {
width: 65%;
View att512.yml
batch_size: 128
buckets: 10,20,30,40
dev_source: newstest2013.tok.bpe.32000.en
attention.dim: 512
attention.score_type: bahdanau
class: GRUCell
num_units: 512
dennybritz /
Last active Apr 14, 2017
Tensorflow 0.9 on AWS GPU instance installation
# Install build tools
sudo apt-get update
sudo apt-get install -y build-essential git python-pip libfreetype6-dev libxft-dev libncurses-dev libopenblas-dev gfortran python3-matplotlib libblas-dev liblapack-dev libatlas-base-dev python3-dev python3-pydot linux-headers-generic linux-image-extra-virtual unzip python3-numpy swig python3-pandas python-sklearn unzip python3-pip python3-venv
# Install CUDA 7
# wget
sudo dpkg -i cuda-repo-ubuntu1504_7.5-18_amd64.deb && rm cuda-repo-ubuntu1504_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install -y cuda
View gist:9df7dd2553b0aa8db808
Variable_2: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/] Variable_2: /job:localhost/replica:0/task:0/cpu:0
zeros: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/] zeros: /job:localhost/replica:0/task:0/cpu:0
Variable_2/Assign: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/] Variable_2/Assign: /job:localhost/replica:0/task:0/cpu:0
Variable_1: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/] Variable_1: /job:localhost/replica:0/task:0/cpu:0
truncated_normal/stddev: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/] truncated_normal/stddev: /job:localhost/replica:0/task:0/cpu:0
# Helper function to plot a decision boundary.
# If you don't fully understand this function don't worry, it just generates the contour plot below.
def plot_decision_boundary(pred_func):
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
You can’t perform that action at this time.