Skip to content

Instantly share code, notes, and snippets.

@derrickturk
Last active June 24, 2020 21:08
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save derrickturk/7ead182081f2ab1b09225fd0c11dbda9 to your computer and use it in GitHub Desktop.
Save derrickturk/7ead182081f2ab1b09225fd0c11dbda9 to your computer and use it in GitHub Desktop.
Parsing OBAN, the Obviously Bogus Abject Notation
(* Copyright 2020 Derrick W. Turk / terminus data science, LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. *)
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
number = digit, { digit };
any_character = ? any UTF-8 code point ?
string = "<<", { (any_character - ">") | ("^", any_character) }, ">>"
triboolean = "True" | "False" | "FileNotFound";
expression = number | string | triboolean | congregation | callout
congregation = "(", [ expression, { ",", expression } ], ")"
callout = "{", [ string, "!", expression, { "&", string, "!", expression } ], "}"
# Copyright 2020 Derrick W. Turk / terminus data science, LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from enum import Enum, auto
from typing import Any, Callable, Dict, List, NamedTuple, Tuple, TypeVar, Union
# data types we need for OBAN:
class TriBool(Enum):
FALSE = auto()
TRUE = auto()
FILENOTFOUND = auto()
# there's no way to write a recursive type alias:
# we'd prefer
# Expression = Union[int, str, TriBool, List[Expression], Dict[str, Expression]]
# but we can't, so we'll wrap it in a class
class Expression:
# type alias for what we can wrap into an expression
Wrappable = Union[
int,
str,
TriBool,
List['Expression'],
Dict[str, 'Expression']
]
def __init__(self, value: Wrappable):
self.value = value
def __repr__(self):
return f'Expression({repr(self.value)})'
# here's how we'd represent:
# { <<first>> ! (1, FileNotFound)
# & <<second>> ! <<some <<text^>^>>>
# & <<third>> ! { <<nested>> ! True }
# }
example: Expression
example = Expression({
'first': Expression([Expression(1), Expression(TriBool.FILENOTFOUND)]),
'second': Expression('some <<text>>'),
'third': Expression({ 'nested': Expression(TriBool.TRUE) })
})
# now, a parser
_T = TypeVar('_T')
ParseResult = Union[Tuple[_T, str], None]
Parser = Callable[[str], ParseResult[_T]]
# a parser which can't fail
InfallibleParser = Callable[[str], Tuple[_T, str]]
# some tools for building 'primitive' parsers
# the simplest parser: 'match exactly this string'
def exactly(match: str) -> Parser[str]:
def parser(input: str) -> ParseResult[str]:
if input.startswith(match):
return match, input[len(match):]
return None
return parser
# another basic one: succeeds at end of input; fails otherwise
# eof: Parser[None]
eof: Parser[None]
eof = lambda input: (None, input) if len(input) == 0 else None
# a parser which consumes a single character, if available
char: Parser[str]
char = lambda input: (input[0], input[1:]) if len(input) > 0 else None
# an 'infallible' parser which consumes characters matching a predicate
def chars_while(p: Callable[[str], bool]) -> InfallibleParser[str]:
def parser(input: str) -> Tuple[str, str]:
split_at = 0
while split_at < len(input) and p(input[split_at]):
split_at += 1
return input[:split_at], input[split_at:]
return parser
# use it to build a "consume whitespace" parser
whitespace: Parser[str]
whitespace = chars_while(str.isspace)
# some basic combinators for parsers
_U = TypeVar('_U')
# map a function over a parser's result, if it succeeds
def pmap(f: Callable[[_T], _U], p: Parser[_T]) -> Parser[_U]:
def parser(input: str) -> ParseResult[_U]:
res = p(input)
if res is None:
return None
x, rest = res
return f(x), rest
return parser
# a parser which always succeeds by producing a constant
def pure(x: _T) -> InfallibleParser[_T]:
return lambda input: (x, input)
# the opposite - a parser which always fails
# it's really a Parser[_T] for all _T, but we'll use Any since mypy
# isn't that sharp
fail: Parser[Any]
fail = lambda _: None
# replace a successful result by a constant
def cmap(x: _T, p: Parser[_U]) -> Parser[_T]:
return pmap(lambda _: x, p)
# these are harder to type in Python - we can do them for the fixed-arity case,
# but it's just too damn convenient to let these take *args
# chain multiple parsers together and produce a tuple of their results,
# if all succeed
def chain(*parsers: Parser[Any]) -> Parser[Tuple[Any, ...]]:
def parser(input: str) -> ParseResult[Tuple[Any, ...]]:
results = list()
for p in parsers:
res = p(input)
if res is None:
return None
val, input = res
results.append(val)
return tuple(results), input
return parser
# run multiple parsers, recovering from errors, until one succeeds;
# fail if all parsers fail
def alt(*parsers: Parser[Any]) -> Parser[Any]:
def parser(input: str) -> ParseResult[Any]:
for p in parsers:
res = p(input)
if res is not None:
return res
return None
return parser
# capture zero or more repetitions of a parser
def many(p: Parser[_T]) -> InfallibleParser[List[_T]]:
def parser(input: str) -> Tuple[List[_T], str]:
results: List[_T] = list()
while True:
res = p(input)
if res is None:
return results, input
val, input = res
results.append(val)
return parser
# we can use alt to define an "optional" parser combinator, which allows but does
# not require its base parser to match
def optional(p: Parser[_T]) -> Parser[Union[_T, None]]:
return alt(p, pure(None))
# finally, a way to "decide" the next parser based on
# the result of the previous - this is what makes Parser a monad
def bind(p: Parser[_T], f: Callable[[_T], Parser[_U]]) -> Parser[_U]:
def parser(input: str) -> ParseResult[_U]:
res = p(input)
if res is None:
return None
x, input = res
return f(x)(input)
return parser
# we can use bind to build some interesting extensions to previous
# parsers
# like chars_while, but requires there to be at least one matching char
def chars_while1(p: Callable[[str], bool]) -> Parser[str]:
return bind(chars_while(p), lambda c: fail if len(c) == 0 else pure(c))
# use it to build a "run of digits" parser
digits: Parser[str]
digits = chars_while1(str.isdigit)
# use it to build an "unsigned integer" parser
integer: Parser[int]
integer = pmap(int, digits)
# capture one or more repetitions of a parser
def some(p: Parser[_T]) -> Parser[List[_T]]:
return bind(many(p), lambda r: fail if len(r) == 0 else pure(r))
# now we can start building some more interesting combinators
# mypy hates type-checking lambdas as arguments to pmap, so we'll need some
# tuple-extractor functions
def first(t: Tuple[Any, ...]) -> Any:
return t[0]
def second(t: Tuple[Any, ...]) -> Any:
return t[1]
# "only" p - match what p matches, then insist on end-of-input
def only(p: Parser[_T]) -> Parser[_T]:
return pmap(first, chain(p, eof))
# match p, followed by optional whitespace
def lexeme(p: Parser[_T]) -> Parser[_T]:
return pmap(first, chain(p, whitespace))
# match zero or more p, separated by sep
def sep_by(p: Parser[_T], sep: Parser[_U]) -> Parser[List[_T]]:
# mypy hates this thing's type
# it should be:
# def extract(t: Union[Tuple[_T, List[Tuple[_U, _T]]], None]) -> List[_T]:
# but that fails inference when we use it as an argument to pmap
def extract(t):
if t is None:
return []
return [t[0]] + [u[1] for u in t[1]]
return pmap(
extract,
optional(chain(p, many(chain(sep, p)))))
# now we can write our recursive descent parser for OBAN
# we already have `integer`
tribool: Parser[TriBool]
tribool = alt(
cmap(TriBool.FALSE, exactly('False')),
cmap(TriBool.TRUE, exactly('True')),
cmap(TriBool.FILENOTFOUND, exactly('FileNotFound'))
)
# again, mypy isn't smart enough to follow the type of this "lambda"
def _string_extract(t):
_1, parts, _2 = t
return ''.join(p[1] if isinstance(p, tuple) else p for p in parts)
string: Parser[str]
string = pmap(
_string_extract,
chain(
exactly('<<'),
many(alt(
chars_while1(lambda c: c != '>' and c != '^'),
chain(exactly('^'), char)
)),
exactly('>>')
))
# there's a circular dependency between congregation, callout, and expression
# we'll break it in expression, by making it a "proper" function
def expression(input: str) -> ParseResult[Expression]:
parser = pmap(
Expression,
lexeme(alt(integer, tribool, string, congregation, callout)))
return parser(input)
# in a lazier world, this would work:
# expression: Parser[Expression]
# expression = pmap(
# Expression,
# lexeme(alt(integer, tribool, string, congregation, callout)))
congregation: Parser[List[Expression]]
congregation = pmap(
second,
chain(
lexeme(exactly('(')),
sep_by(expression, lexeme(exactly(','))),
lexeme(exactly(')'))
))
def _callout_extract(t):
return { kv[0]: kv[2] for kv in t[1] }
callout: Parser[Dict[str, Expression]]
callout = pmap(
_callout_extract,
chain(
lexeme(exactly('{')),
sep_by(chain(
lexeme(string),
lexeme(exactly('!')),
expression
),
lexeme(exactly('&'))),
lexeme(exactly('}'))
))
# since `lexeme` skips trailing whitespace, we need to allow leading whitespace
# before a document explicitly, then ensure end-of-input
document: Parser[Expression]
document = pmap(second, chain(whitespace, only(expression)))
def main(argv: List[str]) -> int:
for line in sys.stdin:
res = document(line)
if res is None:
print('> parse error', file=sys.stderr)
else:
x, _ = res
print(f'> {x}')
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))
# Copyright 2020 Derrick W. Turk / terminus data science, LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from enum import Enum, auto
from typing import Any, Callable, Dict, List, NamedTuple, Tuple, TypeVar, Union
# OBAN AST definitions
class TriBool(Enum):
FALSE = auto()
TRUE = auto()
FILENOTFOUND = auto()
class Expression:
Wrappable = Union[
int,
str,
TriBool,
List['Expression'],
Dict[str, 'Expression']
]
def __init__(self, value: Wrappable):
self.value = value
def __repr__(self):
return f'Expression({repr(self.value)})'
# this time, we'll parse into a monad with state, context,
# and a richer notion of failure
class ParserState(NamedTuple):
pos: int = 0
# methods for producing updated states
def advance(self, chars: int) -> 'ParserState':
return self._replace(pos = self.pos + chars)
# is the parser at the end of input?
def is_eof(self, input: str) -> bool:
return self.pos >= len(input)
# examine the next n chars from the input, starting at pos
def slice(self, input: str, chars: int) -> str:
return input[self.pos : self.pos + chars]
# fail at the current pos with a given 'expected' message
def fail(self, expected: str, committed: bool = False) -> 'ParseError':
return ParseError(self.pos, expected, committed)
class ParseError(NamedTuple):
pos: int
expected: str
committed: bool = False # is this error "un-backtrackable"? see `alt`.
_T = TypeVar('_T')
ParseResult = Union[Tuple[_T, ParserState], ParseError]
Parser = Callable[[str, ParserState], ParseResult[_T]]
# a parser which can't fail
InfallibleParser = Callable[[str, ParserState], Tuple[_T, ParserState]]
def exactly(match: str) -> Parser[str]:
def parser(input: str, state: ParserState) -> ParseResult[str]:
if state.slice(input, len(match)) == match:
return match, state.advance(len(match))
return state.fail(f'"{match}"')
return parser
eof: Parser[None]
eof = lambda input, state: (
(None, state) if state.is_eof(input)
else state.fail('end of input')
)
char: Parser[str]
char = lambda input, state: (
(state.slice(input, 1), state.advance(1)) if not state.is_eof(input)
else state.fail('any character')
)
# we could build this with char, but we'll write it more efficiently by
# directly inspecting the input one character at a time
def chars_while(p: Callable[[str], bool]) -> InfallibleParser[str]:
def parser(input: str, state: ParserState) -> Tuple[str, ParserState]:
chars: int = 0
while state.pos + chars < len(input) and p(input[state.pos + chars]):
chars += 1
return state.slice(input, chars), state.advance(chars)
return parser
whitespace: Parser[str]
whitespace = chars_while(str.isspace)
# combinators work like before - but there will be a little more plumbing
# in the error case
_U = TypeVar('_U')
# map a function over a parser's result, if it succeeds
def pmap(f: Callable[[_T], _U], p: Parser[_T]) -> Parser[_U]:
def parser(input: str, state: ParserState) -> ParseResult[_U]:
res = p(input, state)
if isinstance(res, ParseError):
return res
x, new_state = res
return f(x), new_state
return parser
# a parser which always succeeds by producing a constant
def pure(x: _T) -> InfallibleParser[_T]:
return lambda _, state: (x, state)
# the opposite - a parser which always fails (with a given "expected" message)
def fail(expected: str) -> Parser[_T]:
return lambda _, state: state.fail(expected)
# replace a successful result by a constant
def cmap(x: _T, p: Parser[_U]) -> Parser[_T]:
return pmap(lambda _: x, p)
# these are harder to type in Python - we can do them for the fixed-arity case,
# but it's just too convenient to let these take *args
# chain multiple parsers together and produce a tuple of their results,
# if all succeed
def chain(*parsers: Parser[Any]) -> Parser[Tuple[Any, ...]]:
def parser(input: str, state: ParserState) -> ParseResult[Tuple[Any, ...]]:
results = list()
for p in parsers:
res = p(input, state)
if isinstance(res, ParseError):
return res
val, state = res
results.append(val)
return tuple(results), state
return parser
# run multiple parsers, recovering from errors, until one succeeds;
# fail if all parsers fail
# this parser introduces a new issue: "unbacktrackable" errors
# we usually want `alt` to backtrack when a sub-parser fails, so that it can
# try the next parser in the sequence without consuming any input.
# however, sometimes a sub-parser "knows" that the expected grammar is locked
# in, and we want `alt` to fail if that parser fails.
# consider parsing Python's `x if y else z`: once we see `if`, we know that
# we're inside a conditional expression - if we get a subsequent parse error,
# we would not want to go back and try parsing the whole thing as, say, a list
# comprehension!
def alt(*parsers: Parser[Any]) -> Parser[Any]:
def parser(input: str, state: ParserState) -> ParseResult[Any]:
expected: List[str] = list()
for p in parsers:
res = p(input, state)
if not isinstance(res, ParseError):
return res
if res.committed:
return res # these errors can't be backtracked
expected.append(res.expected)
# take a crack at an "expected" message by combining sub-parser messages
return state.fail(', or '.join(expected))
return parser
# run a parser, but make any errors "committed"/"unbacktrackable"
def commit(p: Parser[_T]) -> Parser[_T]:
def parser(input: str, state: ParserState) -> ParseResult:
res = p(input, state)
if isinstance(res, ParseError):
return res._replace(committed=True)
return res
return parser
# capture zero or more repetitions of a parser
# the end-of-loop condition is a form of backtracking, so we need to check
# for a committed error
def many(p: Parser[_T]) -> Parser[List[_T]]:
def parser(input: str, state: ParserState) -> ParseResult[List[_T]]:
results: List[_T] = list()
while True:
res = p(input, state)
if isinstance(res, ParseError):
if res.committed:
return res
return results, state
val, state = res
results.append(val)
return parser
# we can use alt to define an "optional" parser combinator, which allows but does
# not require its base parser to match
def optional(p: Parser[_T]) -> Parser[Union[_T, None]]:
return alt(p, pure(None))
# finally, a way to "decide" the next parser based on
# the result of the previous - this is what makes Parser a monad
def bind(p: Parser[_T], f: Callable[[_T], Parser[_U]]) -> Parser[_U]:
def parser(input: str, state: ParserState) -> ParseResult[_U]:
res = p(input, state)
if isinstance(res, ParseError):
return res
x, state = res
return f(x)(input, state)
return parser
# we can use bind to build some interesting extensions to previous
# parsers
# like chars_while, but requires there to be at least one matching char
# rather than "guess" an expected message, take it as an argument
def chars_while1(p: Callable[[str], bool], expected: str) -> Parser[str]:
return bind(chars_while(p), lambda c: (
pure(c) if len(c) > 0 else fail(expected)
))
# use it to build a "run of digits" parser
digits: Parser[str]
digits = chars_while1(str.isdigit, 'digits')
# use it to build an "unsigned integer" parser
integer: Parser[int]
integer = pmap(int, digits)
# capture one or more repetitions of a parser
def some(p: Parser[_T], expected: str) -> Parser[List[_T]]:
return bind(many(p), lambda c: (
pure(c) if len(c) > 0 else fail(expected)
))
# now we can start building some more interesting combinators
# mypy hates type-checking lambdas as arguments to pmap, so we'll need some
# tuple-extractor functions
def first(t: Tuple[Any, ...]) -> Any:
return t[0]
def second(t: Tuple[Any, ...]) -> Any:
return t[1]
# "only" p - match what p matches, then insist on end-of-input
def only(p: Parser[_T]) -> Parser[_T]:
return pmap(first, chain(p, eof))
# match p, followed by optional whitespace
def lexeme(p: Parser[_T]) -> Parser[_T]:
return pmap(first, chain(p, whitespace))
# match zero or more p, separated by sep
def sep_by(p: Parser[_T], sep: Parser[_U]) -> Parser[List[_T]]:
# mypy hates this thing's type
# it should be:
# def extract(t: Union[Tuple[_T, List[Tuple[_U, _T]]], None]) -> List[_T]:
# but that fails inference when we use it as an argument to pmap
def extract(t):
if t is None:
return []
return [t[0]] + [u[1] for u in t[1]]
return pmap(
extract,
optional(chain(p, many(chain(sep, commit(p))))))
# now we can write our recursive descent parser for OBAN
# we already have `integer`
tribool: Parser[TriBool]
tribool = alt(
cmap(TriBool.FALSE, exactly('False')),
cmap(TriBool.TRUE, exactly('True')),
cmap(TriBool.FILENOTFOUND, exactly('FileNotFound'))
)
# again, mypy isn't smart enough to follow the type of this "lambda"
def _string_extract(t):
_1, (parts, _2) = t
return ''.join(p[1] if isinstance(p, tuple) else p for p in parts)
string: Parser[str]
string = pmap(
_string_extract,
chain(
exactly('<<'),
commit(chain(
many(alt(
chars_while1(lambda c: c != '>' and c != '^',
'non-escape characters'),
chain(exactly('^'), char)
)),
exactly('>>')
))
))
# there's a circular dependency between congregation, callout, and expression
# we'll break it in expression, by making it a "proper" function
def expression(input: str, state: ParserState) -> ParseResult[Expression]:
parser = pmap(
Expression,
lexeme(alt(integer, tribool, string, congregation, callout)))
return parser(input, state)
# in a lazier world, this would work:
# expression: Parser[Expression]
# expression = pmap(
# Expression,
# lexeme(alt(integer, tribool, string, congregation, callout)))
def _congregation_extract(t):
return t[1][0]
congregation: Parser[List[Expression]]
congregation = pmap(
_congregation_extract,
chain(
lexeme(exactly('(')),
commit(chain(
sep_by(expression, lexeme(exactly(','))),
lexeme(exactly(')'))))
))
def _callout_extract(t):
return { kv[0]: kv[2] for kv in t[1][0] }
callout: Parser[Dict[str, Expression]]
callout = pmap(
_callout_extract,
chain(
lexeme(exactly('{')),
commit(chain(
sep_by(chain(
lexeme(string),
lexeme(exactly('!')),
expression
),
lexeme(exactly('&'))),
lexeme(exactly('}'))
))
))
# since `lexeme` skips trailing whitespace, we need to allow leading whitespace
# before a document explicitly, then ensure end-of-input
document: Parser[Expression]
document = pmap(second, chain(whitespace, only(expression)))
def main(argv: List[str]) -> int:
for line in sys.stdin:
res = document(line.rstrip(), ParserState())
if isinstance(res, ParseError):
print(f"{' ' * res.pos}^ expected: {res.expected}", file=sys.stderr)
else:
x, _ = res
print(f'> {x}')
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))
# Copyright 2020 Derrick W. Turk / terminus data science, LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from enum import Enum, auto
from typing import Callable, Dict, List, NamedTuple, Tuple, TypeVar, Union
class ParserState(NamedTuple):
input: str
pos: int = 0
class ParseError(NamedTuple):
expected: str
pos: int
# allow backtracking on failure (True), or commit to this error (False)?
backtrack: bool = True
_T = TypeVar('_T')
ParseResult = Union[Tuple[_T, ParserState], ParseError]
# Parser = Callable[[ParserState], ParseResult[_T]]
# (useless, because we can't write
# p : Parser[int]
# def p(state: ParserState) -> ParseResult[int]:
# ...
# )
def whitespace(state: ParserState) -> Tuple[None, ParserState]:
pos = state.pos
while pos < len(state.input) and state.input[pos].isspace():
pos += 1
return (None, ParserState(state.input, pos))
def integer(state: ParserState) -> ParseResult[int]:
_, state = whitespace(state)
pos = state.pos
if not state.input[pos].isdigit():
return ParseError('integer', pos)
num = ''
while pos < len(state.input) and state.input[pos].isdigit():
num += state.input[pos]
pos += 1
return (int(num), ParserState(state.input, pos))
def string(state: ParserState) -> ParseResult[str]:
_, state = whitespace(state)
pos = state.pos
if state.input[pos:pos+2] != '<<':
return ParseError('<<', pos)
pos += 2
text = ''
while pos < len(state.input):
if state.input[pos] == '^':
if pos + 1 >= len(state.input):
return ParseError('any character', pos + 1, backtrack = False)
text += state.input[pos+1]
pos += 2
elif state.input[pos:pos+2] == '>>':
pos += 2
return (text, ParserState(state.input, pos))
else:
text += state.input[pos]
pos += 1
return ParseError('>>', pos, backtrack = False)
class TriBool(Enum):
FALSE = auto()
TRUE = auto()
FILENOTFOUND = auto()
def tribool(state: ParserState) -> ParseResult[TriBool]:
_, state = whitespace(state)
pos = state.pos
if state.input[pos:pos+5] == 'False':
pos += 5
return (TriBool.FALSE, ParserState(state.input, pos))
if state.input[pos:pos+4] == 'True':
pos += 4
return (TriBool.TRUE, ParserState(state.input, pos))
if state.input[pos:pos+12] == 'FileNotFound':
pos += 12
return (TriBool.FILENOTFOUND, ParserState(state.input, pos))
return ParseError('tribool', pos)
# there's no way to write a recursive type alias:
# we'd prefer
# Expression = Union[int, str, TriBool, List[Expression], Dict[str, Expression]]
# but we can't, so we'll wrap it in a class
class Expression:
# type alias for what we can wrap into an expression
Wrappable = Union[
int,
str,
TriBool,
List['Expression'],
Dict[str, 'Expression']
]
def __init__(self, value: Wrappable):
self.value = value
def __repr__(self):
return f'Expression({repr(self.value)})'
def congregation(state: ParserState) -> ParseResult[List[Expression]]:
_, state = whitespace(state)
if state.pos >= len(state.input) or state.input[state.pos] != '(':
return ParseError('(', state.pos)
state = ParserState(state.input, state.pos + 1)
_, state = whitespace(state)
exprs: List[Expression] = list()
# the first expression (no comma)
expr_res = expression(state)
if isinstance(expr_res, ParseError):
if not expr_res.backtrack:
return expr_res
if state.pos < len(state.input) and state.input[state.pos] == ')':
return (exprs, ParserState(state.input, state.pos + 1))
else:
return ParseError('expression or )', state.pos, backtrack = False)
expr, state = expr_res
exprs.append(expr)
while True:
_, state = whitespace(state)
pos = state.pos
if pos < len(state.input) and state.input[pos] == ')':
pos += 1
return (exprs, ParserState(state.input, pos))
if pos < len(state.input) and state.input[pos] == ',':
state = ParserState(state.input, pos + 1)
_, state = whitespace(state)
expr_res = expression(state)
if isinstance(expr_res, ParseError):
return expr_res._replace(backtrack = False)
expr, state = expr_res
exprs.append(expr)
else:
return ParseError(', or )', pos, backtrack = False)
def callout(state: ParserState) -> ParseResult[Dict[str, Expression]]:
_, state = whitespace(state)
if state.pos >= len(state.input) or state.input[state.pos] != '{':
return ParseError('{', state.pos)
state = ParserState(state.input, state.pos + 1)
_, state = whitespace(state)
exprs: Dict[str, Expression] = dict()
# the first mapping (no &)
label_res = string(state)
if isinstance(label_res, ParseError):
if not label_res.backtrack:
return label_res
if state.pos < len(state.input) and state.input[state.pos] == '}':
return (exprs, ParserState(state.input, state.pos + 1))
else:
return ParseError('string or }', state.pos, backtrack = False)
label, state = label_res
_, state = whitespace(state)
if state.pos < len(state.input) and state.input[state.pos] == '!':
state = ParserState(state.input, state.pos + 1)
_, state = whitespace(state)
else:
return ParseError('!', state.pos, backtrack = False)
_, state = whitespace(state)
expr_res = expression(state)
if isinstance(expr_res, ParseError):
return expr_res._replace(backtrack = False)
expr, state = expr_res
exprs[label] = expr
while True:
_, state = whitespace(state)
pos = state.pos
if pos < len(state.input) and state.input[pos] == '}':
pos += 1
return (exprs, ParserState(state.input, pos))
if pos < len(state.input) and state.input[pos] == '&':
state = ParserState(state.input, pos + 1)
_, state = whitespace(state)
label_res = string(state)
if isinstance(label_res, ParseError):
return label_res._replace(backtrack = False)
label, state = label_res
_, state = whitespace(state)
if state.pos < len(state.input) and state.input[state.pos] == '!':
state = ParserState(state.input, state.pos + 1)
_, state = whitespace(state)
else:
return ParseError('!', state.pos, backtrack = False)
_, state = whitespace(state)
expr_res = expression(state)
if isinstance(expr_res, ParseError):
return expr_res._replace(backtrack = False)
expr, state = expr_res
exprs[label] = expr
else:
return ParseError('& or }', pos, backtrack = False)
def expression(state: ParserState) -> ParseResult[Expression]:
_, state = whitespace(state)
# first, try to parse as an integer
int_res = integer(state)
if not isinstance(int_res, ParseError):
num, state = int_res
return (Expression(num), state)
elif not int_res.backtrack:
return int_res
# then, as a tribool
tribool_res = tribool(state)
if not isinstance(tribool_res, ParseError):
tb, state = tribool_res
return (Expression(tb), state)
elif not tribool_res.backtrack:
return tribool_res
# then, as a string
str_res = string(state)
if not isinstance(str_res, ParseError):
text, state = str_res
return (Expression(text), state)
elif not str_res.backtrack:
return str_res
# then, as a congregation
cong_res = congregation(state)
if not isinstance(cong_res, ParseError):
cong, state = cong_res
return (Expression(cong), state)
elif not cong_res.backtrack:
return cong_res
# finally, as a callout
call_res = callout(state)
if not isinstance(call_res, ParseError):
call, state = call_res
return (Expression(call), state)
elif not call_res.backtrack:
return call_res
return ParseError('expression', state.pos)
# one, and only one, expression
def document(state: ParserState) -> ParseResult[Expression]:
res = expression(state)
if isinstance(res, ParseError):
return res
expr, state = res
_, state = whitespace(state)
if state.pos != len(state.input):
return ParseError('end of document', state.pos)
return expr, state
def main(argv: List[str]) -> int:
for line in sys.stdin:
res = document(ParserState(line, 0))
if isinstance(res, ParseError):
print(f'{" " * res.pos}^ expected {res.expected}', file=sys.stderr)
continue
parsed, _ = res
print(parsed)
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
OBAN grammar & parser code
Copyright 2020 Derrick W. Turk
This software contains code derived from "Irregular Expressions"
by Derrick W. Turk (https://usethe.computer/posts/18-irregular-expressions.html).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment