Skip to content

Instantly share code, notes, and snippets.

@dgrtwo
Created December 20, 2021 01:57
Show Gist options
  • Save dgrtwo/ebd2448bbe8864cc92627411307300ae to your computer and use it in GitHub Desktop.
Save dgrtwo/ebd2448bbe8864cc92627411307300ae to your computer and use it in GitHub Desktop.
My solution to Day 19 of Advent of Code 2021
library(tidyverse)
library(adventdrob)
input <- advent_input(19, 2021)
beacons <- input %>%
filter(x != "") %>%
mutate(scanner = cumsum(str_detect(x, "scanner"))) %>%
filter(!str_detect(x, "scanner")) %>%
separate(x, c("x", "y", "z"), sep = ",", convert = TRUE) %>%
group_by(scanner) %>%
mutate(b = row_number())
# Get all beacon-beacon distances *within* each scanner
distances <- beacons %>%
inner_join(beacons, by = "scanner", suffix = c("1", "2")) %>%
filter(b1 != b2) %>%
mutate(distance = sqrt((x2 - x1) ^ 2 + (y2 - y1) ^ 2 + (z2 - z1) ^ 2)) %>%
select(scanner, b1, b2, distance)
# Another self-join to compare two scanners (s1 and s2)
# Whichever beacon in s2 has the most distances in common
pairs <- distances %>%
inner_join(distances, by = "distance", suffix = c("_s1", "_s2")) %>%
filter(scanner_s1 != scanner_s2) %>%
gather(b, beacon_s2, b1_s2, b2_s2) %>%
count(scanner_s1, scanner_s2, beacon_s1 = b1_s1, beacon_s2, sort = TRUE) %>%
distinct(scanner_s1, scanner_s2, beacon_s1, .keep_all = TRUE) %>%
filter(scanner_s1 < scanner_s2) %>%
group_by(scanner_s1, scanner_s2) %>%
filter(n() >= 12) %>%
ungroup()
# Create pairs of 12x3 matrices for each pair of overlapping scanners
matrices <- beacons %>%
group_by(scanner) %>%
summarize(matrix = list(cbind(x, y, z)))
matching_matrices <- pairs %>%
group_by(scanner_s1, scanner_s2) %>%
summarize(index_s1 = list(beacon_s1),
index_s2 = list(beacon_s2)) %>%
ungroup() %>%
inner_join(matrices %>% select(scanner, matrix1 = matrix),
by = c("scanner_s1" = "scanner")) %>%
inner_join(matrices %>% select(scanner, matrix2 = matrix),
by = c("scanner_s2" = "scanner")) %>%
mutate(matrix1 = map2(matrix1, index_s1, ~ .x[.y, ]),
matrix2 = map2(matrix2, index_s2, ~ .x[.y, ]))
# Get the transformations needed to turn matrix 1 to match matrix 2
transformation_find <- function(m1, m2) {
# Match standard deviations to find how x, y, z line up
m1_sds <- round(apply(m1, 2, sd))
m2_sds <- round(apply(m2, 2, sd))
# Reorient m2's xyz to match m1
reorderer <- match(m2_sds, m1_sds)
m1 <- m1[, reorderer]
# Reorient the direction
facing <- (m2[2, ] - m2[1, ]) / (m1[2, ] - m1[1, ])
m1 <- t(facing * t(m1))
# Find the difference
delta <- (m2 - m1)[1, ]
list(reorderer = reorderer,
facing = facing,
delta = delta)
}
transformation_apply <- function(m, tr) {
ret <- t(tr$facing * t(m[, tr$reorderer]) + tr$delta)
colnames(ret) <- c("x", "y", "z")
ret
}
# Transformations from 1->2 and back
matrix_transformations <- matching_matrices %>%
transmute(s1 = scanner_s1,
s2 = scanner_s2,
transformation = map2(matrix1, matrix2, transformation_find))
reverse_transformations <- matching_matrices %>%
transmute(s1 = scanner_s2,
s2 = scanner_s1,
transformation = map2(matrix2, matrix1, transformation_find))
transformations <- bind_rows(matrix_transformations, reverse_transformations)
library(tidygraph)
library(igraph)
# Sort to ensure index x is scanner x
g <- graph_from_data_frame(transformations) %>%
as_tbl_graph() %>%
arrange(as.integer(name))
# For each matrix, apply the series of transformations
results <- map(seq_len(nrow(matrices)), function(i) {
edges <- as.numeric(igraph::shortest_paths(g, i, 1, output = "epath")$epath[[1]])
transforms <- transformations$transformation[edges]
# For part 2 (not shown), I threw in a 0,0,0 point for each
reduce(transforms, transformation_apply, .init = matrices$matrix[[i]])
})
# Find the number of distinct x/y/z
results %>%
enframe() %>%
mutate(value = map(value, as.data.frame)) %>%
unnest(value) %>%
distinct(x, y, z)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment