Skip to content

Instantly share code, notes, and snippets.

@dharmatech
Created May 15, 2014 22:54
Show Gist options
  • Save dharmatech/fcde5a41acdaaff9c2ab to your computer and use it in GitHub Desktop.
Save dharmatech/fcde5a41acdaaff9c2ab to your computer and use it in GitHub Desktop.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Symbolism;
using Physics;
using Utils;
namespace Tests
{
class Program
{
static void AssertEqual(DoubleFloat a, DoubleFloat b, double tolerance = 0.00000001)
{
if (Math.Abs(a.val - b.val) > tolerance)
Console.WriteLine("{0} and {1} are not equal", a.val, b.val);
}
static void AssertEqual(MathObject a, Double b, double tolerance = 0.00000001)
{
var x = (DoubleFloat)a;
var y = new DoubleFloat(b);
if (Math.Abs(x.val - y.val) > tolerance)
Console.WriteLine("{0} and {1} are not equal", x.val, y.val);
}
static void Main(string[] args)
{
Action<Equation> AssertIsTrue = (eq) =>
{
if (!eq) Console.WriteLine(eq.ToString());
};
Func<MathObject, MathObject> sin = obj => Trig.Sin(obj);
Func<MathObject, MathObject> cos = obj => Trig.Cos(obj);
{
var x = new Symbol("x");
var y = new Symbol("y");
var z = new Symbol("z");
Func<int, Integer> Int = (n) => new Integer(n);
AssertIsTrue(x + x == 2 * x);
AssertIsTrue(x + x == 2 * x);
AssertIsTrue(x + x + x == 3 * x);
AssertIsTrue(5 + x + 2 == 7 + x);
AssertIsTrue(3 + x + 5 + x == 8 + 2 * x);
AssertIsTrue(4 * x + 3 * x == 7 * x);
AssertIsTrue(x + y + z + x + y + z == 2 * x + 2 * y + 2 * z);
AssertIsTrue(10 - x == 10 + x * -1);
AssertIsTrue(x * y / 3 == Int(1) / 3 * x * y);
AssertIsTrue(x / y == x * (y ^ -1));
AssertIsTrue(x / 3 == x * (Int(1) / 3));
AssertIsTrue(6 * x * y / 3 == 2 * x * y);
AssertIsTrue((((x ^ Int(1) / 2) ^ Int(1) / 2) ^ 8) == (x ^ 2));
AssertIsTrue(((((x * y) ^ (Int(1) / 2)) * (z ^ 2)) ^ 2) == (x * y * (z ^ 4)));
AssertIsTrue(x / x == 1);
AssertIsTrue(x / y * y / x == 1);
AssertIsTrue((x ^ 2) * (x ^ 3) == (x ^ 5));
AssertIsTrue(x + y + x + z + 5 + z == 5 + 2 * x + y + 2 * z);
AssertIsTrue(((Int(1) / 2) * x + (Int(3) / 4) * x) == Int(5) / 4 * x);
AssertIsTrue(1.2 * x + 3 * x == 4.2 * x);
AssertIsTrue(3 * x + 1.2 * x == 4.2 * x);
AssertIsTrue(1.2 * x * 3 * y == 3.5999999999999996 * x * y);
AssertIsTrue(3 * x * 1.2 * y == 3.5999999999999996 * x * y);
AssertIsTrue(3.4 * x * 1.2 * y == 4.08 * x * y);
// Power.Simplify
AssertIsTrue((0 ^ x) == 0);
AssertIsTrue((1 ^ x) == 1);
AssertIsTrue((x ^ 0) == 1);
AssertIsTrue((x ^ 1) == x);
// Product.Simplify
AssertIsTrue(x * 0 == 0);
// Difference
AssertIsTrue(-x == -1 * x);
AssertIsTrue(x - y == x + -1 * y);
AssertIsTrue(Int(10).Substitute(Int(10), 20) == 20);
AssertIsTrue(Int(10).Substitute(Int(15), 20) == 10);
AssertIsTrue(new DoubleFloat(1.0).Substitute(new DoubleFloat(1.0), 2.0) == 2.0);
AssertIsTrue(new DoubleFloat(1.0).Substitute(new DoubleFloat(1.5), 2.0) == 1.0);
AssertIsTrue((Int(1) / 2).Substitute(Int(1) / 2, Int(3) / 4) == Int(3) / 4);
AssertIsTrue((Int(1) / 2).Substitute(Int(1) / 3, Int(3) / 4) == Int(1) / 2);
AssertIsTrue(x.Substitute(x, y) == y);
AssertIsTrue(x.Substitute(y, y) == x);
AssertIsTrue((x ^ y).Substitute(x, 10) == (10 ^ y));
AssertIsTrue((x ^ y).Substitute(y, 10) == (x ^ 10));
AssertIsTrue((x ^ y).Substitute(x ^ y, 10) == 10);
AssertIsTrue((x * y * z).Substitute(x, y) == ((y ^ 2) * z));
AssertIsTrue((x * y * z).Substitute(x * y * z, x) == x);
AssertIsTrue((x + y + z).Substitute(x, y) == ((y * 2) + z));
AssertIsTrue((x + y + z).Substitute(x + y + z, x) == x);
AssertIsTrue(
((((x * y) ^ (Int(1) / 2)) * (z ^ 2)) ^ 2)
.Substitute(x, 10)
.Substitute(y, 20)
.Substitute(z, 3)
== 16200
);
AssertIsTrue(sin(new DoubleFloat(3.14159 / 2)) == 0.99999999999911982);
AssertIsTrue(sin(x + y) + sin(x + y) == 2 * sin(x + y));
AssertIsTrue(sin(x + x) == sin(2 * x));
AssertIsTrue(sin(x + x).Substitute(x, 1) == sin(Int(2)));
AssertIsTrue(sin(x + x).Substitute(x, 1.0) == 0.90929742682568171);
AssertIsTrue(sin(2 * x).Substitute(x, y) == sin(2 * y));
// Product.RecursiveSimplify
AssertIsTrue(1 * x == x);
AssertIsTrue(x * 1 == x);
AssertIsTrue(x != y);
AssertIsTrue(x != 10);
// ==(double a, MathObject b)
AssertIsTrue(1.0 == new DoubleFloat(3.0) - 2.0);
// Console.WriteLine((x + x + x + x) / x);
}
#region PSE 5E Example 4.3
{
var thA = new Symbol("thA"); // angle at point A
var vA = new Symbol("vA"); // velocity at point A
var g = new Symbol("g"); // magnitude of gravity
var _g = new Point(0, -g); // gravity vector
var objA =
new Obj()
{
position = new Point(0, 0),
velocity = Point.FromAngle(thA, vA),
acceleration = _g,
time = new Integer(0)
};
var objB =
new Obj()
{
velocity = new Point(objA.velocity.x, 0),
acceleration = _g
};
var timeB = Calc.Time(objA, objB);
var timeC = timeB * 2;
objB = objA.AtTime(timeB);
var objC = objA.AtTime(timeC);
//Console.WriteLine("How far does he dump in the horizontal direction?");
AssertIsTrue(objC.position.x == 2 * Trig.Cos(thA) * Trig.Sin(thA) * (vA ^ 2) / g);
//Console.WriteLine("What is the maximum height reached?");
AssertIsTrue(objB.position.y == (Trig.Sin(thA) ^ 2) * (vA ^ 2) / 2 / g);
// Console.WriteLine("Distance jumped: ");
var deg = 3.14159 / 180.0;
AssertIsTrue(
objC.position.x
// .Substitute(thA, Trig.ToRadians(20))
.Substitute(thA, 20 * deg)
.Substitute(g, 9.8)
.Substitute(Trig.Pi, 3.14159)
.Substitute(vA, 11)
==
7.9364536850196412);
//Console.WriteLine("Maximum height reached: ");
AssertIsTrue(
objB.position.y
.Substitute(g, 9.8)
.Substitute(thA, Trig.ToRadians(20))
.Substitute(Trig.Pi, 3.14159)
.Substitute(vA, 11)
==
0.72215756424454336);
}
#endregion
#region PSE 5E EXAMPLE 4.5
{
// A stone is thrown from the top of a building upward at an
// angle of 30.0° to the horizontal and with an initial speed of
// 20.0 m/s, as shown in Figure 4.12. If the height of the building
// is 45.0 m, (a) how long is it before the stone hits the ground?
// (b) What is the speed of the stone just before it strikes the
// ground?
var thA = new Symbol("thA"); // angle at point A
var vA = new Symbol("vA"); // velocity at point A
var g = new Symbol("g"); // magnitude of gravity
var _g = new Point(0, -g); // gravity vector
var objA = new Obj()
{
position = new Point(0, 0),
velocity = Point.FromAngle(thA, vA),
acceleration = _g,
time = new Integer(0)
};
var objB = new Obj()
{
velocity = new Point(objA.velocity.x, 0),
acceleration = _g,
};
var timeB = Calc.Time(objA, objB);
objB = objA.AtTime(timeB);
var timeC = timeB * 2;
var objC = objA.AtTime(timeC);
var yD = new Symbol("yD");
var objD = new Obj()
{
position = new Point(null, yD),
velocity = new Point(objA.velocity.x, null),
acceleration = _g
};
var timeAD = Calc.Time(objA, objD, 1);
objD = objA.AtTime(timeAD);
// "How long is it before the stone hits the ground?".Disp();
// "Symbolic answer:".Disp();
AssertIsTrue(
timeAD
==
-1 * (g ^ -1) * (-1 * Trig.Sin(thA) * vA + -1 * (((Trig.Sin(thA) ^ 2) * (vA ^ 2) + -2 * g * yD) ^ (new Integer(1) / 2))));
// "Numeric answer:".Disp();
AssertEqual(
(DoubleFloat)
timeAD
.Substitute(g, 9.8)
.Substitute(thA, (30).ToRadians())
.Substitute(Trig.Pi, 3.14159)
.Substitute(vA, 20)
.Substitute(yD, -45),
new DoubleFloat(4.21804787012706),
0.0001);
// "What is the speed of the stone just before it strikes the ground?".Disp();
// "Symbolic answer:".Disp();
AssertIsTrue(
objD.velocity.Norm()
==
(((Trig.Cos(thA) ^ 2) * (vA ^ 2) + (Trig.Sin(thA) ^ 2) * (vA ^ 2) + -2 * g * yD) ^ (new Integer(1) / 2)));
// "Numeric answer:".Disp();
AssertEqual(
(DoubleFloat)
objD.velocity.Norm()
.Substitute(g, 9.8)
.Substitute(thA, (30).ToRadians())
.Substitute(Trig.Pi, 3.14159)
.Substitute(vA, 20)
.Substitute(yD, -45),
new DoubleFloat(35.805027579936315),
0.1);
}
#endregion
#region PSE 5E EXAMPLE 4.6
{
// An Alaskan rescue plane drops a package of emergency rations
// to a stranded party of explorers, as shown in Figure
// 4.13. If the plane is traveling horizontally at 40.0 m/s and is
// 100 m above the ground, where does the package strike the
// ground relative to the point at which it was released?
var xA = new Symbol("xA"); // position.x at point A
var yA = new Symbol("yA"); // position.y at point A
var thA = new Symbol("thA"); // angle at point A
var vA = new Symbol("vA"); // velocity at point A
var g = new Symbol("g"); // magnitude of gravity
var _g = new Point(0, -g); // gravity vector
var objA = new Obj() // obj at the initial position
{
position = new Point(xA, yA),
velocity = Point.FromAngle(thA, vA),
acceleration = _g,
time = 0
};
var objB = new Obj() // obj at the final position
{
position = new Point(null, 0),
velocity = new Point(objA.velocity.x, null),
acceleration = _g
};
var timeB = Calc.Time(objA, objB, 1);
objB = objA.AtTime(timeB);
//"Where does the package strike the ground relative to the point at which it was released?".Disp(); "".Disp();
//"symbolic:".Disp();
//objB.position.x.Disp(); "".Disp();
AssertIsTrue(
objB.position.x
==
xA - cos(thA) / g * vA * (-sin(thA) * vA - (((sin(thA) ^ 2) * (vA ^ 2) + 2 * g * yA) ^ new Integer(1) / 2)));
//"numeric:".Disp();
//objB.position.x
// .Substitute(xA, 0)
// .Substitute(yA, 100)
// .Substitute(vA, 40)
// .Substitute(thA, 0.0)
// .Substitute(g, 9.8)
// .Disp();
AssertEqual(
objB.position.x
.Substitute(xA, 0)
.Substitute(yA, 100)
.Substitute(vA, 40)
.Substitute(thA, 0.0)
.Substitute(g, 9.8),
180.70158058105025);
//"".Disp();
//("What are the horizontal and vertical components " +
// "of the velocity of the package just before it hits the ground?").Disp(); "".Disp();
//"symbolic velocity.x:".Disp();
//objB.velocity.x.Disp(); "".Disp();
AssertIsTrue(objB.velocity.x == cos(thA) * vA);
//"symbolic velocity.y:".Disp();
//objB.velocity.y.Disp(); "".Disp();
AssertIsTrue(
objB.velocity.y
==
-1 * (((sin(thA) ^ 2) * (vA ^ 2) + 2 * g * yA) ^ (new Integer(1) / 2)));
//"numeric velocity.x:".Disp();
//objB.velocity.x
// .Substitute(xA, 0)
// .Substitute(yA, 100)
// .Substitute(vA, 40)
// .Substitute(thA, 0.0)
// .Substitute(g, 9.8)
// .Disp(); "".Disp();
AssertEqual(
objB.velocity.x
.Substitute(xA, 0)
.Substitute(yA, 100)
.Substitute(vA, 40)
.Substitute(thA, 0.0)
.Substitute(g, 9.8),
40);
//"numeric velocity.y:".Disp();
//objB.velocity.y
// .Substitute(xA, 0)
// .Substitute(yA, 100)
// .Substitute(vA, 40)
// .Substitute(thA, 0.0)
// .Substitute(g, 9.8)
// .Disp(); "".Disp();
AssertEqual(
objB.velocity.y
.Substitute(xA, 0)
.Substitute(yA, 100)
.Substitute(vA, 40)
.Substitute(thA, 0.0)
.Substitute(g, 9.8),
-44.271887242357316);
}
#endregion
#region PSE 5E EXAMPLE 4.7
{
// A ski jumper leaves the ski track moving in the horizontal
// direction with a speed of 25.0 m/s, as shown in Figure 4.14.
// The landing incline below him falls off with a slope of 35.0°.
// Where does he land on the incline?
var thA = new Symbol("thA"); // angle at point A
var vA = new Symbol("vA"); // velocity at point A
var g = new Symbol("g"); // magnitude of gravity
var _g = new Point(0, -g); // gravity vector
var th = new Symbol("th"); // angle of incline
var objA = new Obj()
{
position = new Point(0, 0),
velocity = Point.FromAngle(thA, vA),
acceleration = _g,
time = 0
};
Func<MathObject, MathObject> numeric = obj =>
obj
.Substitute(vA, 25)
.Substitute(thA, 0.0)
.Substitute(th, (-35).ToRadians())
.Substitute(Trig.Pi, 3.14159)
.Substitute(g, 9.8);
var intersection = objA.ProjectileInclineIntersection(th);
Action nl = () => "".Disp();
// "Where does he land on the incline?".Disp(); nl();
// "x position (symbolic):".Disp();
// intersection.x.Disp(); nl();
AssertIsTrue(
intersection.x
==
-2 * (cos(th) ^ -1) * (cos(thA) ^ 2) * (g ^ -1) * (sin(th) + -1 * cos(th) * (cos(thA) ^ -1) * sin(thA)) * (vA ^ 2));
//"y position (symbolic):".Disp();
//intersection.y.Disp(); nl();
AssertIsTrue(
intersection.y
==
-2 * (cos(th) ^ -2) * (cos(thA) ^ 2) / g * sin(th) * (sin(th) + -1 * cos(th) * (cos(thA) ^ -1) * sin(thA)) * (vA ^ 2));
//"x position (numeric):".Disp();
//numeric(intersection.x).Disp(); nl();
AssertEqual(numeric(intersection.x), 89.3120879153208);
//"y position (numeric):".Disp();
//numeric(intersection.y).Disp(); nl();
AssertEqual(numeric(intersection.y), -62.536928534704884);
var objB = new Obj()
{
position = intersection,
acceleration = _g
};
//"Determine how long the jumper is airborne".Disp(); nl();
//"symbolic:".Disp();
var timeB = Calc.Time(objA, objB, 1);
// timeB.Disp(); nl();
Func<MathObject, MathObject> sqrt = obj => obj ^ (new Integer(1) / 2);
AssertIsTrue(
timeB
==
-1 / g *
(-sin(thA) * vA -
sqrt(
(sin(thA) ^ 2) * (vA ^ 2) + 4 * (cos(th) ^ -2) * (cos(thA) ^ 2) * sin(th) *
(sin(th) - cos(th) / cos(thA) * sin(thA)) *
(vA ^ 2))));
//"numeric:".Disp();
//numeric(timeB).Disp(); nl();
AssertEqual(numeric(timeB), 3.5724835166128317);
objB = objA.AtTime(timeB);
//"Determine his vertical component of velocity just before he lands".Disp();
//nl();
//"symbolic:".Disp();
//objB.velocity.y.Disp(); nl();
AssertIsTrue(
objB.velocity.y
==
-sqrt(
(sin(thA) ^ 2) * (vA ^ 2)
+
4 * (cos(th) ^ -2) * (cos(thA) ^ 2) * sin(th) *
(sin(th) - cos(th) * (cos(thA) ^ -1) * sin(thA)) *
(vA ^ 2)));
//"numeric:".Disp();
//numeric(objB.velocity.y).Disp();
AssertEqual(
numeric(objB.velocity.y),
-35.010338462805755);
}
#endregion
#region PSE 5E PROBLEM 4.11
{
// One strategy in a snowball fight is to throw a first snowball at a
// high angle over level ground. While your opponent is watching the
// first one, you throw a second one at a low angle and timed to arrive
// at your opponent before or at the same time as the first one. Assume
// both snowballs are thrown with a speed of 25.0 m/s. The first one is
// thrown at an angle of 70.0° with respect to the horizontal.
//
// (a) At what angle should the second (low-angle) snowball be thrown
// if it is to land at the same point as the first?
//
// (b) How many seconds later should the second snowball be thrown if it
// is to land at the same time as the first?
var xA = new Symbol("xA"); // position.x at point A
var yA = new Symbol("yA"); // position.y at point A
var th1A = new Symbol("th1A"); // angle of snowball 1 at point A
var vA = new Symbol("vA"); // velocity at point A
var g = new Symbol("g"); // magnitude of gravity
var _g = new Point(0, -g); // gravity vector
//Func<MathObject, MathObject> numeric = obj =>
// obj
// .Substitute(xA, 0)
// .Substitute(xB, 1.4)
// .Substitute(yA, 0.86)
// .Substitute(g, 9.8)
// .Substitute(Trig.Pi, 3.14159);
var obj1A = new Obj() // snowball 1 at initial point
{
position = new Point(xA, yA),
velocity = Point.FromAngle(th1A, vA),
acceleration = _g,
time = 0
};
var obj1B = new Obj() // snowball 1 at final point
{
position = new Point(null, 0),
velocity = new Point(obj1A.velocity.x, null),
acceleration = _g
};
var time1B = Calc.Time(obj1A, obj1B, 1);
obj1B = obj1A.AtTime(time1B);
var obj2A = new Obj() // snowball 2 at initial point
{
position = obj1A.position,
speed = vA,
acceleration = _g
};
var obj2B = new Obj() // snowball 2 at final point
{
position = obj1B.position,
acceleration = _g
};
//Calc.InitialAngle(obj2A, obj2B, 1, 0)
// .Substitute(yA, 0)
// .Substitute(th1A, (70).ToRadians())
// .Substitute(vA, 25)
// .Substitute(Trig.Pi, 3.14159)
// .Substitute(g, 9.8)
// .ToDegrees()
// .Substitute(Trig.Pi, 3.14159)
// .Disp();
var th2 = Calc.InitialAngle(obj2A, obj2B, 0, 0);
//("At what angle should the second (low-angle) snowball " +
//"be thrown if it is to land at the same point as the first?").Disp();
//"".Disp();
//"symbolic:".Disp();
//th2.Disp(); "".Disp();
//"numeric:".Disp();
AssertEqual(
th2
.ToDegrees()
.Substitute(yA, 0)
.Substitute(th1A, (70).ToRadians())
.Substitute(vA, 25)
.Substitute(g, 9.8)
.Substitute(Trig.Pi, Math.PI),
20.000000000000007);
//"".Disp();
obj2A.velocity = Point.FromAngle(th2, vA);
var time2B = Calc.Time(obj2A, obj2B, 1);
//("How many seconds later should the second snowball be thrown if it " +
//"is to land at the same time as the first?").Disp();
//"".Disp();
//"symbolic:".Disp();
//(time1B - time2B).Disp(); "".Disp();
//"numeric:".Disp();
//(time1B - time2B)
// .Substitute(yA, 0)
// .Substitute(th1A, (70).ToRadians())
// .Substitute(vA, 25)
// .Substitute(Trig.Pi, 3.14159)
// .Substitute(g, 9.8)
// .Disp();
AssertEqual(
(time1B - time2B)
.Substitute(yA, 0)
.Substitute(th1A, (70).ToRadians())
.Substitute(vA, 25)
.Substitute(Trig.Pi, 3.14159)
.Substitute(g, 9.8),
3.0493426265020469);
//Console.ReadLine();
}
#endregion
#region PSE 5E PROBLEM 4.17
{
// A cannon with a muzzle speed of 1 000 m/s is used to
// start an avalanche on a mountain slope. The target is
// 2 000 m from the cannon horizontally and 800 m above
// the cannon. At what angle, above the horizontal, should
// the cannon be fired?
var xA = new Symbol("xA"); // position.x at point A
var yA = new Symbol("yA"); // position.y at point A
var thA = new Symbol("thA"); // angle of snowball 1 at point A
var vA = new Symbol("vA"); // velocity at point A
var xB = new Symbol("xB"); // position.x at point A
var yB = new Symbol("yB"); // position.y at point A
var g = new Symbol("g"); // magnitude of gravity
var _g = new Point(0, -g); // gravity vector
var objA = new Obj()
{
position = new Point(xA, yA),
speed = vA,
acceleration = _g,
time = 0
};
var objB = new Obj()
{
position = new Point(xB, yB),
acceleration = _g
};
//"At what angle, above the horizontal, should the cannon be fired?".Disp();
AssertEqual(
Calc.InitialAngle(objA, objB)
.ToDegrees()
.Substitute(xA, 0)
.Substitute(yA, 0)
.Substitute(xB, 2000.0)
.Substitute(yB, 800)
.Substitute(vA, 1000)
.Substitute(g, 9.8)
.Substitute(Trig.Pi, Math.PI),
22.365163229244317);
//Calc.InitialAngle(objA, objB)
// .ToDegrees()
// .Substitute(xA, 0)
// .Substitute(yA, 0)
// .Substitute(xB, 2000.0)
// .Substitute(yB, 800)
// .Substitute(vA, 1000)
// .Substitute(g, 9.8)
// .Substitute(Trig.Pi, Math.PI)
// .Disp();
}
#endregion
#region PSE 5E PROBLEM 4.24
{
// A bag of cement of weight 325 N hangs from three
// wires as shown in Figure P5.24. Two of the wires make
// angles th1 = 60.0° and th2 = 25.0° with the horizontal. If
// the system is in equilibrium, find the tensions
// T1, T2, and T3 in the wires.
var F1 = new Symbol("F1");
var F2 = new Symbol("F2");
var F3 = new Symbol("F3");
var th1 = new Symbol("th1");
var th2 = new Symbol("th2");
var th3 = new Symbol("th3");
var _F1 = new Point() { angle = th1 };
var _F2 = new Point() { angle = th2 };
var _F3 = new Point() { magnitude = F3, angle = th3 };
var m = new Symbol("m");
var obj = new Obj();
obj.acceleration.x = 0;
obj.acceleration.y = 0;
obj.mass = m;
obj.forces.Add(_F1);
obj.forces.Add(_F2);
obj.forces.Add(_F3);
//"F1 magnitude, symbolic:".Disp(); "".Disp();
//obj.ForceMagnitude(_F1).Disp(); "".Disp();
//"F1 magnitude, numeric:".Disp(); "".Disp();
//obj.ForceMagnitude(_F1)
// .Substitute(F3, 325)
// .Substitute(th1, (180 - 60).ToRadians())
// .Substitute(th2, (25).ToRadians())
// .Substitute(th3, (270).ToRadians())
// .Substitute(Trig.Pi, Math.PI)
// .Disp();
AssertEqual(
obj.ForceMagnitude(_F1)
.Substitute(F3, 325)
.Substitute(th1, (180 - 60).ToRadians())
.Substitute(th2, (25).ToRadians())
.Substitute(th3, (270).ToRadians())
.Substitute(Trig.Pi, Math.PI),
295.67516405290525);
// "".Disp();
//"F3 magnitude, numeric:".Disp(); "".Disp();
//obj.ForceMagnitude(_F2)
// .Substitute(F3, 325)
// .Substitute(th1, (180 - 60).ToRadians())
// .Substitute(th2, (25).ToRadians())
// .Substitute(th3, (270).ToRadians())
// .Substitute(Trig.Pi, Math.PI)
// .Disp();
AssertEqual(
obj.ForceMagnitude(_F2)
.Substitute(F3, 325)
.Substitute(th1, (180 - 60).ToRadians())
.Substitute(th2, (25).ToRadians())
.Substitute(th3, (270).ToRadians())
.Substitute(Trig.Pi, Math.PI),
163.12072360079395);
}
#endregion
Console.WriteLine("Testing complete");
Console.ReadLine();
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment