Skip to content

Instantly share code, notes, and snippets.

@dhruvilp
Last active June 23, 2020 02:21
Show Gist options
  • Save dhruvilp/293c6529274c60fc73604f7298def7d5 to your computer and use it in GitHub Desktop.
Save dhruvilp/293c6529274c60fc73604f7298def7d5 to your computer and use it in GitHub Desktop.
Flutter Art
// Inspiration: Robert Felker flutter art work
// [WORK-IN-PROGRESS]
import 'dart:math' as math;
import 'dart:ui';
import 'package:flutter/material.dart';
import 'package:flutter/rendering.dart';
// Look Ma NO WIDGET in Flutter !!!
class Colored extends CustomPainter {
@override
void paint(Canvas canvas, Size size) {
final random = SimplexNoise();
final frames = 200;
canvas.drawPaint(Paint()..color = Colors.yellow);
for (double i = 10; i < frames; i += .1) {
canvas.translate(i % .3, i % .6);
canvas.save();
canvas.rotate(math.pi / i * 25);
final area = Offset(i, i) & Size(i * 10, i * 10);
// Blue trail is made of rectangle
canvas.drawRect(
area,
Paint()
..filterQuality =
FilterQuality.high // Change this to lower render time
..blendMode =
BlendMode.screen // Remove this to see the natural drawing shape
..color =
// Addition of Opacity gives you the fading effect from dark to light
Colors.blue.withRed(i.toInt() * 20 % 11).withOpacity(i / 850));
// Tail particles effect
// Change this to add more fibers
final int tailFibers = (i * 1.5).toInt();
for (double d = 0; d < area.width; d += tailFibers) {
for (double e = 0; e < area.height; e += tailFibers) {
final n = random.noise2D(d, e);
final tail = math.exp(i / 50) - 5;
final tailWidth = .2 + (i * .11 * n);
canvas.drawCircle(
Offset(d, e),
tailWidth,
Paint()
..color = Colors.red.withOpacity(.4)
..isAntiAlias = true // Change this to lower render time
// Particles accelerate as they fall so we change the blur size for movement effect
..imageFilter = ImageFilter.blur(sigmaX: tail, sigmaY: 0)
..filterQuality =
FilterQuality.high // Change this to lower render time
..blendMode = BlendMode
.screen); // Remove this to see the natural drawing shape
}
}
canvas.restore();
}
}
@override
bool shouldRepaint(CustomPainter oldDelegate) => true;
}
void main() => RenderingFlutterBinding(
root: RenderPositionedBox(
alignment: Alignment.center,
// alignment: Alignment(.1, -.2),
child: RenderCustomPaint(painter: Colored()),
widthFactor: 500.0,
heightFactor: 500.0,
),
);
//===============================================
class SimplexNoise {
static final List<List<double>> _grad3 = <List<double>>[
<double>[1.0, 1.0, 0.0],
<double>[-1.0, 1.0, 0.0],
<double>[1.0, -1.0, 0.0],
<double>[-1.0, -1.0, 0.0],
<double>[1.0, 0.0, 1.0],
<double>[-1.0, 0.0, 1.0],
<double>[1.0, 0.0, -1.0],
<double>[-1.0, 0.0, -1.0],
<double>[0.0, 1.0, 1.0],
<double>[0.0, -1.0, 1.0],
<double>[0.0, 1.0, -1.0],
<double>[0.0, -1.0, -1.0]
];
static final List<List<double>> _grad4 = <List<double>>[
<double>[0.0, 1.0, 1.0, 1.0],
<double>[0.0, 1.0, 1.0, -1.0],
<double>[0.0, 1.0, -1.0, 1.0],
<double>[0.0, 1.0, -1.0, -1.0],
<double>[0.0, -1.0, 1.0, 1.0],
<double>[0.0, -1.0, 1.0, -1.0],
<double>[0.0, -1.0, -1.0, 1.0],
<double>[0.0, -1.0, -1.0, -1.0],
<double>[1.0, 0.0, 1.0, 1.0],
<double>[1.0, 0.0, 1.0, -1.0],
<double>[1.0, 0.0, -1.0, 1.0],
<double>[1.0, 0.0, -1.0, -1.0],
<double>[-1.0, 0.0, 1.0, 1.0],
<double>[-1.0, 0.0, 1.0, -1.0],
<double>[-1.0, 0.0, -1.0, 1.0],
<double>[-1.0, 0.0, -1.0, -1.0],
<double>[1.0, 1.0, 0.0, 1.0],
<double>[1.0, 1.0, 0.0, -1.0],
<double>[1.0, -1.0, 0.0, 1.0],
<double>[1.0, -1.0, 0.0, -1.0],
<double>[-1.0, 1.0, 0.0, 1.0],
<double>[-1.0, 1.0, 0.0, -1.0],
<double>[-1.0, -1.0, 0.0, 1.0],
<double>[-1.0, -1.0, 0.0, -1.0],
<double>[1.0, 1.0, 1.0, 0.0],
<double>[1.0, 1.0, -1.0, 0.0],
<double>[1.0, -1.0, 1.0, 0.0],
<double>[1.0, -1.0, -1.0, 0.0],
<double>[-1.0, 1.0, 1.0, 0.0],
<double>[-1.0, 1.0, -1.0, 0.0],
<double>[-1.0, -1.0, 1.0, 0.0],
<double>[-1.0, -1.0, -1.0, 0.0]
];
// To remove the need for index wrapping, double the permutation table length
List<int> _perm;
List<int> _permMod12;
// Skewing and unskewing factors for 2, 3, and 4 dimensions
static final double _f2 = 0.5 * (math.sqrt(3.0) - 1.0);
static final double _g2 = (3.0 - math.sqrt(3.0)) / 6.0;
static const double _f3 = 1.0 / 3.0;
static const double _g3 = 1.0 / 6.0;
static final double _f4 = (math.sqrt(5.0) - 1.0) / 4.0;
static final double _g4 = (5.0 - math.sqrt(5.0)) / 20.0;
double _dot2(List<double> g, double x, double y) => g[0] * x + g[1] * y;
double _dot3(List<double> g, double x, double y, double z) =>
g[0] * x + g[1] * y + g[2] * z;
double _dot4(List<double> g, double x, double y, double z, double w) =>
g[0] * x + g[1] * y + g[2] * z + g[3] * w;
SimplexNoise([math.Random r]) {
r ??= math.Random();
final List<int> p =
List<int>.generate(256, (_) => r.nextInt(256), growable: false);
_perm = List<int>.generate(p.length * 2, (int i) => p[i % p.length],
growable: false);
_permMod12 = List<int>.generate(_perm.length, (int i) => _perm[i] % 12,
growable: false);
}
double noise2D(double xin, double yin) {
double n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
final double s = (xin + yin) * _f2; // Hairy factor for 2D
final int i = (xin + s).floor();
final int j = (yin + s).floor();
final double t = (i + j) * _g2;
final double kX0 = i - t; // Unskew the cell origin back to (x,y) space
final double kY0 = j - t;
final double x0 = xin - kX0; // The x,y distances from the cell origin
final double y0 = yin - kY0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
i1 = 1;
j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {
i1 = 0;
j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
final double x1 =
x0 - i1 + _g2; // Offsets for middle corner in (x,y) unskewed coords
final double y1 = y0 - j1 + _g2;
final double x2 = x0 -
1.0 +
2.0 * _g2; // Offsets for last corner in (x,y) unskewed coords
final double y2 = y0 - 1.0 + 2.0 * _g2;
// Work out the hashed gradient indices of the three simplex corners
final int ii = i & 255;
final int jj = j & 255;
final int gi0 = _permMod12[ii + _perm[jj]];
final int gi1 = _permMod12[ii + i1 + _perm[jj + j1]];
final int gi2 = _permMod12[ii + 1 + _perm[jj + 1]];
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 *
t0 *
_dot2(_grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * _dot2(_grad3[gi1], x1, y1);
}
var t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * _dot2(_grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
}
// 3D simplex noise
double noise3D(double xin, double yin, double zin) {
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
final double s =
(xin + yin + zin) * _f3; // Very nice and simple skew factor for 3D
final int i = (xin + s).floor();
final int j = (yin + s).floor();
final int k = (zin + s).floor();
final double t = (i + j + k) * _g3;
final double kX0 = i - t; // Unskew the cell origin back to (x,y,z) space
final double kY0 = j - t;
final double kZ0 = k - t;
final double x0 = xin - kX0; // The x,y,z distances from the cell origin
final double y0 = yin - kY0;
final double z0 = zin - kZ0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // X Y Z order
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} // X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
} else {
// x0<y0
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} // Z Y X order
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} // Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
final double x1 =
x0 - i1 + _g3; // Offsets for second corner in (x,y,z) coords
final double y1 = y0 - j1 + _g3;
final double z1 = z0 - k1 + _g3;
final double x2 =
x0 - i2 + 2.0 * _g3; // Offsets for third corner in (x,y,z) coords
final double y2 = y0 - j2 + 2.0 * _g3;
final double z2 = z0 - k2 + 2.0 * _g3;
final double x3 =
x0 - 1.0 + 3.0 * _g3; // Offsets for last corner in (x,y,z) coords
final double y3 = y0 - 1.0 + 3.0 * _g3;
final double z3 = z0 - 1.0 + 3.0 * _g3;
// Work out the hashed gradient indices of the four simplex corners
final int ii = i & 255;
final int jj = j & 255;
final int kk = k & 255;
final int gi0 = _permMod12[ii + _perm[jj + _perm[kk]]];
final int gi1 = _permMod12[ii + i1 + _perm[jj + j1 + _perm[kk + k1]]];
final int gi2 = _permMod12[ii + i2 + _perm[jj + j2 + _perm[kk + k2]]];
final int gi3 = _permMod12[ii + 1 + _perm[jj + 1 + _perm[kk + 1]]];
// Calculate the contribution from the four corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * _dot3(_grad3[gi0], x0, y0, z0);
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * _dot3(_grad3[gi1], x1, y1, z1);
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * _dot3(_grad3[gi2], x2, y2, z2);
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) {
n3 = 0.0;
} else {
t3 *= t3;
n3 = t3 * t3 * _dot3(_grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3);
}
// 4D simplex noise, better simplex rank ordering method 2012-03-09
double noise4D(double x, double y, double z, double w) {
double n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
final double s = (x + y + z + w) * _f4; // Factor for 4D skewing
final int i = (x + s).floor();
final int j = (y + s).floor();
final int k = (z + s).floor();
final int l = (w + s).floor();
final double t = (i + j + k + l) * _g4; // Factor for 4D unskewing
final double kX0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
final double kY0 = j - t;
final double kZ0 = k - t;
final double kW0 = l - t;
final double x0 = x - kX0; // The x,y,z,w distances from the cell origin
final double y0 = y - kY0;
final double z0 = z - kZ0;
final double w0 = w - kW0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
var rankx = 0;
var ranky = 0;
var rankz = 0;
var rankw = 0;
if (x0 > y0) {
rankx++;
} else {
ranky++;
}
if (x0 > z0) {
rankx++;
} else {
rankz++;
}
if (x0 > w0) {
rankx++;
} else {
rankw++;
}
if (y0 > z0) {
ranky++;
} else {
rankz++;
}
if (y0 > w0) {
ranky++;
} else {
rankw++;
}
if (z0 > w0) {
rankz++;
} else {
rankw++;
}
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
final double x1 =
x0 - i1 + _g4; // Offsets for second corner in (x,y,z,w) coords
final double y1 = y0 - j1 + _g4;
final double z1 = z0 - k1 + _g4;
final double w1 = w0 - l1 + _g4;
final double x2 =
x0 - i2 + 2.0 * _g4; // Offsets for third corner in (x,y,z,w) coords
final double y2 = y0 - j2 + 2.0 * _g4;
final double z2 = z0 - k2 + 2.0 * _g4;
final double w2 = w0 - l2 + 2.0 * _g4;
final double x3 =
x0 - i3 + 3.0 * _g4; // Offsets for fourth corner in (x,y,z,w) coords
final double y3 = y0 - j3 + 3.0 * _g4;
final double z3 = z0 - k3 + 3.0 * _g4;
final double w3 = w0 - l3 + 3.0 * _g4;
final double x4 =
x0 - 1.0 + 4.0 * _g4; // Offsets for last corner in (x,y,z,w) coords
final double y4 = y0 - 1.0 + 4.0 * _g4;
final double z4 = z0 - 1.0 + 4.0 * _g4;
final double w4 = w0 - 1.0 + 4.0 * _g4;
// Work out the hashed gradient indices of the five simplex corners
final int ii = i & 255;
final int jj = j & 255;
final int kk = k & 255;
final int ll = l & 255;
final int gi0 = _perm[ii + _perm[jj + _perm[kk + _perm[ll]]]] % 32;
final int gi1 =
_perm[ii + i1 + _perm[jj + j1 + _perm[kk + k1 + _perm[ll + l1]]]] % 32;
final int gi2 =
_perm[ii + i2 + _perm[jj + j2 + _perm[kk + k2 + _perm[ll + l2]]]] % 32;
final int gi3 =
_perm[ii + i3 + _perm[jj + j3 + _perm[kk + k3 + _perm[ll + l3]]]] % 32;
final int gi4 =
_perm[ii + 1 + _perm[jj + 1 + _perm[kk + 1 + _perm[ll + 1]]]] % 32;
// Calculate the contribution from the five corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * _dot4(_grad4[gi0], x0, y0, z0, w0);
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * _dot4(_grad4[gi1], x1, y1, z1, w1);
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * _dot4(_grad4[gi2], x2, y2, z2, w2);
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0) {
n3 = 0.0;
} else {
t3 *= t3;
n3 = t3 * t3 * _dot4(_grad4[gi3], x3, y3, z3, w3);
}
var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0) {
n4 = 0.0;
} else {
t4 *= t4;
n4 = t4 * t4 * _dot4(_grad4[gi4], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment