Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
library(aire.zmvm)
library(rsinaica)
library(ggplot2)
library(tidyverse)
library(lubridate)
library(zoo)
library(hrbrthemes)
pm25_2019 <- sinaica_param_data("PM2.5", "2019-05-01", "2019-05-16")
pm25 <- pm25_2019 %>%
filter(network_name %in% c("Valle de México", "Toluca", "Guadalajara",
"Cuernavaca", "Puebla", "Pachuca")) %>%
mutate(datetime = ymd_h(paste0(date, " ", hour))) %>%
group_by(network_name, station_name) %>%
arrange(station_id, date, hour) %>%
mutate(roll = rollapply(value, 24, mean, na.rm = TRUE, partial = 18,
fill = NA, align = "right"))
pm25$network_name <- factor(pm25$network_name,
levels = c("Cuernavaca", "Valle de México", "Toluca",
"Puebla", "Guadalajara",
"Pachuca"))
ggplot(pm25,
aes(datetime, roll, group = station_name)) +
geom_line() +
ylab("µg/m³") +
xlab("fecha") +
geom_hline(yintercept = 98, color = "#fc9272") +
annotate("text", y = 105, x = as.POSIXct("2019-05-05"),
label = "Contingencia en ZMVM", color = "#fc9272") +
labs(title = expression(paste("Promedio de 24 horas de niveles de ", PM[2.5],
", por ciudad y estación (2019-05-01 a 2019-05-16)")),
caption = "Fuenta: SINAICA") +
facet_wrap(~ network_name, ncol = 2) +
theme_ipsum()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.