Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Convert a list of jpg images into a fixed size TFRecord file
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
for file in valid_files:
file_name = os.path.split(file)[1]
label = int(os.path.basename(os.path.split(file)[0]))
if images % 1000 == 0:
index = images // 1000
if current != index:
current = index
record_file = directory + '/' + f'{index:05}' + '.tfrecord'
if writer:
writer.close()
print('{} images'.format(images))
print('New file: ', record_file)
writer = tf.python_io.TFRecordWriter(record_file)
try:
img = Image.open(file)
img = img.resize((image_dim, image_dim), Image.ANTIALIAS).convert('RGB').tobytes()
if len(img) != image_dim * image_dim * 3:
print('Something is wrong with this image: {}'.format(file))
continue
example = tf.train.Example(
features=tf.train.Features(
feature={
'label': _int64_feature(label),
'image_raw': _bytes_feature(img)
}))
writer.write(example.SerializeToString())
images += 1
except Exception as e:
print('Ignored image: ' + file)
print(e)
if writer:
writer.close()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.