Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
stock correlation analysis
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tushare as ts
#获取数据
s_pf = '600000'
s_gd = '601818'
sdate = '2016-01-01'
edate = '2016-12-31'
df_pf = ts.get_h_data(s_pf, start = sdate, end = edate).sort_index(axis = 0, ascending = True)
df_gd = ts.get_h_data(s_gd, start = sdate, end = edate).sort_index(axis = 0, ascending = True)
df = pd.concat([df_pf.close, df_gd.close], axis = 1, keys = ['pf_close','gd_close'])
df.ffill(axis = 0, inplace = True) #填充数据
df.to_csv('pf_gd.csv')
# 分析数据
df = pd.read_csv('pf_gd.csv')
corr = df.corr(method = 'pearson', min_periods = 1)
print(corr)
df.plot(figsize = (20,12))
plt.savefig('pf_gd.png')
plt.close()
df['pf_one'] = df.pf_close / float(df.pf_close[0]) * 100
df['gd_one'] = df.gd_close / float(df.gd_close[0]) * 100
df.pf_one.plot(figsize = (20,12), label='pf')
df.gd_one.plot(figsize = (20,12), label='gd')
plt.legend(shadow=True, fancybox=True)
plt.savefig('pf_gd_one.png')
plt.close()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment