Skip to content

Instantly share code, notes, and snippets.

@dmiddlecamp
Last active December 1, 2016 12:37
Show Gist options
  • Save dmiddlecamp/1981d0ab4d82d822224955ada031bee1 to your computer and use it in GitHub Desktop.
Save dmiddlecamp/1981d0ab4d82d822224955ada031bee1 to your computer and use it in GitHub Desktop.
#include "application.h"
#define NUM_SENSORS 1
#define TEMPERATURE_PIN D0
class TempSensor {
public:
char *id ;
uint8_t rom[8];
float value ;
int updated = 0;
};
#ifndef OneWire_h
#define OneWire_h
#include <inttypes.h>
#include "application.h"
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
// TRUE and FALSE are defined by default on the Spark
// #define FALSE 0
// #define TRUE 1
class OneWire
{
private:
uint16_t _pin;
/**************Conditional fast pin access for Core and Photon*****************/
#if PLATFORM_ID == 0 // Core
inline void digitalWriteFastLow() {
PIN_MAP[_pin].gpio_peripheral->BRR = PIN_MAP[_pin].gpio_pin;
}
inline void digitalWriteFastHigh() {
PIN_MAP[_pin].gpio_peripheral->BSRR = PIN_MAP[_pin].gpio_pin;
}
inline void pinModeFastOutput() {
GPIO_TypeDef *gpio_port = PIN_MAP[_pin].gpio_peripheral;
uint16_t gpio_pin = PIN_MAP[_pin].gpio_pin;
GPIO_InitTypeDef GPIO_InitStructure;
if (gpio_port == GPIOA )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
}
else if (gpio_port == GPIOB )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
}
GPIO_InitStructure.GPIO_Pin = gpio_pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
PIN_MAP[_pin].pin_mode = OUTPUT;
GPIO_Init(gpio_port, &GPIO_InitStructure);
}
inline void pinModeFastInput() {
GPIO_TypeDef *gpio_port = PIN_MAP[_pin].gpio_peripheral;
uint16_t gpio_pin = PIN_MAP[_pin].gpio_pin;
GPIO_InitTypeDef GPIO_InitStructure;
if (gpio_port == GPIOA )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
}
else if (gpio_port == GPIOB )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
}
GPIO_InitStructure.GPIO_Pin = gpio_pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
PIN_MAP[_pin].pin_mode = INPUT;
GPIO_Init(gpio_port, &GPIO_InitStructure);
}
inline uint8_t digitalReadFast() {
return GPIO_ReadInputDataBit(PIN_MAP[_pin].gpio_peripheral, PIN_MAP[_pin].gpio_pin);
}
//#elif PLATFORM_ID == 6 || PLATFORM_ID == 8 || PLATFORM_ID == 10 // Photon(P0),P1,Electron
#else // just do this for everything else until they change it again
STM32_Pin_Info* PIN_MAP = HAL_Pin_Map(); // Pointer required for highest access speed
inline void digitalWriteFastLow() {
PIN_MAP[_pin].gpio_peripheral->BSRRH = PIN_MAP[_pin].gpio_pin;
}
inline void digitalWriteFastHigh() {
PIN_MAP[_pin].gpio_peripheral->BSRRL = PIN_MAP[_pin].gpio_pin;
}
inline void pinModeFastOutput(void){
// This could probably be speed up by digging a little deeper past
// the HAL_Pin_Mode function.
HAL_Pin_Mode(_pin, OUTPUT);
}
inline void pinModeFastInput(void){
// This could probably be speed up by digging a little deeper past
// the HAL_Pin_Mode function.
HAL_Pin_Mode(_pin, INPUT);
}
inline uint8_t digitalReadFast(void){
// This could probably be speed up by digging a little deeper past
// the HAL_GPIO_Read function.
return HAL_GPIO_Read(_pin);
}
//#else // no need for this right now
//#error "*** PLATFORM_ID not supported by this library. PLATFORM should be Core, Photon, P1 or Electron ***"
#endif
/**************End conditional fast pin access for Core and Photon*************/
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
uint8_t LastDeviceFlag;
#endif
public:
OneWire( uint16_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
uint8_t search(uint8_t *newAddr);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
#endif
OneWire::OneWire(uint16_t pin)
{
pinMode(pin, INPUT);
_pin = pin;
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
uint8_t r;
uint8_t retries = 125;
noInterrupts();
pinModeFastInput();
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !digitalReadFast());
noInterrupts();
digitalWriteFastLow();
pinModeFastOutput(); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
pinModeFastInput(); // allow it to float
delayMicroseconds(70);
r =! digitalReadFast();
interrupts();
delayMicroseconds(410);
return r;
}
void OneWire::write_bit(uint8_t v)
{
if (v & 1) {
noInterrupts();
digitalWriteFastLow();
pinModeFastOutput(); // drive output low
delayMicroseconds(10);
pinModeFastInput(); // float high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
digitalWriteFastLow();
pinModeFastOutput(); // drive output low
delayMicroseconds(65);
pinModeFastInput(); // float high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
uint8_t r;
noInterrupts();
digitalWriteFastLow();
pinModeFastOutput();
delayMicroseconds(3);
pinModeFastInput(); // let pin float, pull up will raise
delayMicroseconds(10);
r = digitalReadFast();
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */)
{
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( power) {
noInterrupts();
digitalWriteFastHigh();
pinModeFastOutput(); // Drive pin High when power is True
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */)
{
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (power) {
noInterrupts();
digitalWriteFastHigh();
pinModeFastOutput(); // Drive pin High when power is True
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read()
{
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count)
{
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
pinModeFastInput();
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = FALSE;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
uint8_t OneWire::search(uint8_t *newAddr)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number, search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = 0;
// if the last call was not the last one
if (!LastDeviceFlag)
{
// 1-Wire reset
if (!reset()){
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
return FALSE;
}
// issue the search command
write(0xF0);
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1)){
break;
}
else
{
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit){
search_direction = id_bit; // bit write value for search
}
else{
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy)
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
// if 0 was picked then record its position in LastZero
if (search_direction == 0){
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0)
{
rom_byte_number++;
rom_byte_mask = 1;
}
}
}while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65))
{
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0)
LastDeviceFlag = TRUE;
search_result = TRUE;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0]){
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
search_result = FALSE;
}
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t OneWire::crc8( uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}
#endif
OneWire one = OneWire(TEMPERATURE_PIN);
uint8_t resp[9];
char myIpAddress[24];
char tempfStr[16];
double tempOne, tempTwo;
//unsigned int lastTime = 0;
TempSensor sensors[NUM_SENSORS];
int checkIndex = 0;
int toggleState = 0;
void findDevices() {
Serial.println("Searching for devices... wait 2.5 seconds...");
delay(2500);
uint8_t addr[12];
int found = 0;
while(one.search(addr)) {
Serial.print("Found device: ");
char *tempID = new char[16];
sprintf(tempID, "%x%x%x%x%x%x%x%x%x",
addr[0], addr[0], addr[2] , addr[3] , addr[4] , addr[5], addr[6], addr[7] , addr[8]
);
sensors[found].id = tempID;
for(int i=0;i<9;i++)
{
sensors[found].rom[i] = addr[i];
}
sensors[found].updated = 0;
Serial.print(tempID);
Serial.println("");
found++;
}
}
// void initWifi() {
// unsigned long aiIntervalList[16];
// for (int i=0; i<16; i++) { aiIntervalList[i] = 2000; }
// wlan_ioctl_set_scan_params( 1000, 100, 100, 5, 0x1fff, -80, 0, 205, aiIntervalList );
// delay(100);
// wlan_start(0);
// delay(100);
// }
unsigned long lastSleep;
void setup() {
Serial.begin(115200);
Particle.variable("tempOne", &tempOne, DOUBLE);
Particle.variable("tempTwo", &tempTwo, DOUBLE);
findDevices();
lastSleep = millis();
Particle.publish("Temperature/sensor_online", "6");
}
void loop() {
if (checkIndex >= NUM_SENSORS) {
//findDevices();
checkIndex = 0;
unsigned long now = millis();
unsigned long awakeTime = 1000 * 60 * 2;
unsigned long sleepTime = 60 * 28;
//if ((now - lastSleep) > awakeTime) {
// Particle.sleep(SLEEP_MODE_DEEP, sleepTime);
//}
}
uint8_t *rom = sensors[checkIndex].rom;
delay(1000);
//select ROM address
// Get the temp
one.reset();
one.write(0x55);
one.write_bytes(rom,8);
one.write(0x44);
delay(10);
//ask for the temperature from
one.reset();
one.write(0x55);
one.write_bytes(rom, 8);
one.write(0xBE);
one.read_bytes(resp, 9);
byte MSB = resp[1];
byte LSB = resp[0];
float tempRead = ((MSB << 8) | LSB); //using two's compliment
float TemperatureSum = tempRead / 16;
//Multiply by 9, then divide by 5, then add 32
float fahrenheit = ((TemperatureSum * 9) / 5) + 32;
if (fahrenheit > 7000) {
fahrenheit = 7404 - fahrenheit;
}
sensors[checkIndex].value = fahrenheit;
Serial.print("Thermometer ID: ");
Serial.println(sensors[checkIndex].id);
Serial.println("Value: " + String(fahrenheit));
const char *sensorName = NULL;
if (checkIndex == 0) {
tempOne = fahrenheit;
}
else if (checkIndex == 1) {
tempTwo == fahrenheit;
}
unsigned int now = millis();
if ((now - sensors[checkIndex].updated) > 10000)
{
sprintf(tempfStr, "%f", sensors[checkIndex].value);
Particle.publish(String("Temperature_") + sensors[checkIndex].id, tempfStr );
sensors[checkIndex].updated = now;
}
checkIndex++;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment