Skip to content

Instantly share code, notes, and snippets.

View dneuraln's full-sized avatar

Programing with Deep Neural Networks dneuraln

View GitHub Profile
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@dneuraln
dneuraln / elastic_transform.py
Created August 1, 2016 17:41 — forked from fmder/elastic_transform.py
Elastic transformation of an image in Python
import numpy
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
def elastic_transform(image, alpha, sigma, random_state=None):
"""Elastic deformation of images as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
@dneuraln
dneuraln / min-char-rnn.py
Created July 15, 2016 01:50 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/