Skip to content

Instantly share code, notes, and snippets.

@dongyuanxin
Created October 7, 2018 06:41
Show Gist options
  • Save dongyuanxin/d0803a8821c6797e9ce8522a676cf44b to your computer and use it in GitHub Desktop.
Save dongyuanxin/d0803a8821c6797e9ce8522a676cf44b to your computer and use it in GitHub Desktop.
Binary Search Tree
//
// Created by godbmw.com on 2018/9/27.
//
#ifndef BINARYSEARCH_BST_H
#define BINARYSEARCH_BST_H
#include <iostream>
#include <queue>
using namespace std;
template <typename Key, typename Value>
class BST {
private:
struct Node {
Key key;
Value value;
Node *left;
Node *right;
Node(Key key, Value value) {
this->key = key;
this->value = value;
this->left = NULL;
this->right = NULL;
}
Node(Node* node) {
this->key = node->key;
this->value = node->value;
this->left = node->left;
this->right = node->right;
}
};
Node *root;
int count;
private:
Node* insert(Node* node, Key key, Value value) {
if(node == NULL) {
count++;
return new Node(key, value);
}
if(key == node->key) {
node->value = value;
} else if( key < node->key) {
node->left = insert(node->left, key, value);
} else {
node->right = insert(node->right, key, value);
}
return node;
}
bool contain(Node* node, Key key) {
if(node == NULL) {
return false;
}
if(key == node->key) {
return true;
} else if(key < node->key) {
return contain(node->left, key);
} else {
return contain(node->right, key);
}
}
Value* search(Node* node, Key key) {
if(node == NULL) {
return NULL;
}
if(key == node->key) {
return &(node->value);
} else if (key < node->key) {
return search(node->left, key);
} else {
return search(node->right, key);
}
}
void pre_order(Node* node) {
if(node != NULL) {
cout<<node->key<<endl;
pre_order(node->left);
pre_order(node->right);
}
}
void in_order(Node* node) {
if(node != NULL) {
in_order(node->left);
cout<<node->key<<endl;
in_order(node->right);
}
}
void post_order(Node *node) {
if(node != NULL) {
post_order(node->left);
post_order(node->right);
cout<<node->key<<endl;
}
}
// 和后序遍历相似:先destroy左右节点,再释放节点自身
void destroy(Node *node) {
if(node != NULL) {
destroy(node->left);
destroy(node->right);
delete node;
// 别忘记count变动
this->count--;
}
}
// 层序遍历
void level_order(Node* node) {
if(node == NULL) {
return;
}
queue<Node*> q;
q.push(node);
while(!q.empty()) {
Node* node = q.front();
q.pop();
cout<< node->key <<endl;
if(node->left) {
q.push(node->left);
}
if(node->right) {
q.push(node->right);
}
}
}
// 寻找最小键值
Node* minimum(Node* node) {
if(node->left == NULL) {
return node;
}
return minimum(node->left);
}
Node* maximum(Node* node) {
if(node->right == NULL) {
return node;
}
return maximum(node->right);
}
Node* remove_min(Node* node) {
if(node->left == NULL) {
Node* right = node->right;
delete node;
count--;
return right;
}
node->left = remove_min(node->left);
return node;
}
Node* remove_max(Node* node) {
if(node->right == NULL) {
Node* left = node->left;
delete node;
count--;
return left;
}
node->right = remove_max(node->right);
return node;
}
// 删除掉以node为根的二分搜索树中键值为key的节点
// 返回删除节点后新的二分搜索树的根
// 时间复杂度: O(logN)
Node* remove(Node* node, Key key) {
if(node == NULL) {
return NULL;
}
if(key < node->key) {
node->left = remove(node->left, key);
} else if(key > node->key){
node->right = remove(node->right, key);
} else {
// key == node->key
if(node->left == NULL) {
Node* right = node->right;
delete node;
count--;
return right;
}
if(node->right == NULL) {
Node *left = node->left;
delete node;
count--;
return left;
}
// node->right != NULL && node->left != NULL
Node* successor = new Node(minimum(node->right));
count++;
// "count --" in "function remove_min(node->right)"
successor->right = remove_min(node->right);
successor->left = node->left;
delete node;
count--;
return successor;
}
return node;
}
Node* floor(Node* node, Key key) {
if(node == NULL) {
return NULL;
}
// key等于node->key:floor的结果就是node本身
if(node->key == key) {
return node;
}
// key小于node—>key:floor的结果肯定在node节点的左子树
if(node->key > key) {
return floor(node->left, key);
}
// key大于node->key:右子树可能存在比node->key大,但是比key小的节点
// 如果存在上述情况,返回这个被选出来的节点
// 否则,函数最后返回node本身
Node* tmp = floor(node->right, key);
if(tmp != NULL) {
return tmp;
}
return node;
}
Node* ceil(Node* node, Key key) {
if(node == NULL) {
return NULL;
}
if(node->key == key) {
return node;
}
if(node->key < key) {
return ceil(node->right, key);
}
Node* tmp = ceil(node->left, key);
if(tmp != NULL) {
return tmp;
}
return node;
}
public:
BST() {
this->root = NULL;
this->count = 0;
}
~BST() {
this->destroy(this->root);
}
int size() {
return this->count;
}
bool isEmpty() {
return this->root == NULL;
}
void insert(Key key, Value value) {
this->root = this->insert(this->root, key, value);
}
bool contain(Key key) {
return this->contain(this->root, key);
}
// 注意返回值类型
Value* search(Key key) {
return this->search(this->root, key);
}
void pre_order() {
this->pre_order(this->root);
}
void in_order() {
this->in_order(this->root);
}
void post_order() {
this->post_order(this->root);
}
void level_order() {
this->level_order(this->root);
}
// 寻找最小键值
Key* minimum() {
if(this->count == 0) return NULL;
Node* min_node = this->minimum(this->root);
return &(min_node->key);
}
// 寻找最大键值
Key* maximum() {
if(this->count == 0) return NULL;
Node* max_node = this->maximum(this->root);
return &(max_node->key);
}
void remove_min() {
if(this->root == NULL) {
return;
}
this->root = this->remove_min(this->root);
}
void remove_max() {
if(this->root == NULL) {
return;
}
this->root = this->remove_max(this->root);
}
void remove(Key key) {
this->root = remove(this->root, key);
}
Key* floor(Key key) {
Key* min_key = this->minimum();
if(this->isEmpty() || key < *min_key) {
return NULL;
}
// floor node
Node *node = floor(this->root, key);
return &(node->key);
}
Key* ceil(Key key) {
Key* max_key = this->maximum();
if(this->isEmpty() || key > *max_key) {
return NULL;
}
// ceil node
Node* node = ceil(this->root, key);
return &(node->key);
}
};
#endif //BINARYSEARCH_BST_H
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment