Skip to content

Instantly share code, notes, and snippets.

@dotxnc
Last active July 1, 2018 12:32
Show Gist options
  • Save dotxnc/74b671ae766fb36d75680a42222625c1 to your computer and use it in GitHub Desktop.
Save dotxnc/74b671ae766fb36d75680a42222625c1 to your computer and use it in GitHub Desktop.
/**********************************************************************************************
*
* rlgl - raylib OpenGL abstraction layer
*
* rlgl is a wrapper for multiple OpenGL versions (1.1, 2.1, 3.3 Core, ES 2.0) to
* pseudo-OpenGL 1.1 style functions (rlVertex, rlTranslate, rlRotate...).
*
* When chosing an OpenGL version greater than OpenGL 1.1, rlgl stores vertex data on internal
* VBO buffers (and VAOs if available). It requires calling 3 functions:
* rlglInit() - Initialize internal buffers and auxiliar resources
* rlglDraw() - Process internal buffers and send required draw calls
* rlglClose() - De-initialize internal buffers data and other auxiliar resources
*
* CONFIGURATION:
*
* #define GRAPHICS_API_OPENGL_11
* #define GRAPHICS_API_OPENGL_21
* #define GRAPHICS_API_OPENGL_33
* #define GRAPHICS_API_OPENGL_ES2
* Use selected OpenGL backend
*
* #define RLGL_STANDALONE
* Use rlgl as standalone library (no raylib dependency)
*
* #define SUPPORT_VR_SIMULATOR
* Support VR simulation functionality (stereo rendering)
*
* #define SUPPORT_DISTORTION_SHADER
* Include stereo rendering distortion shader (shader_distortion.h)
*
* DEPENDENCIES:
* raymath - 3D math functionality (Vector3, Matrix, Quaternion)
* GLAD - OpenGL extensions loading (OpenGL 3.3 Core only)
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2014-2018 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "config.h"
#include "rlgl.h"
#include <stdio.h> // Required for: fopen(), fclose(), fread()... [Used only on LoadText()]
#include <stdlib.h> // Required for: malloc(), free(), rand()
#include <string.h> // Required for: strcmp(), strlen(), strtok() [Used only in extensions loading]
#include <math.h> // Required for: atan2()
#if !defined(RLGL_STANDALONE)
#include "raymath.h" // Required for: Vector3 and Matrix functions
#endif
#if defined(GRAPHICS_API_OPENGL_11)
#if defined(__APPLE__)
#include <OpenGL/gl.h> // OpenGL 1.1 library for OSX
#include <OpenGL/glext.h>
#else
// APIENTRY for OpenGL function pointer declarations is required
#ifndef APIENTRY
#ifdef _WIN32
#define APIENTRY __stdcall
#else
#define APIENTRY
#endif
#endif
// WINGDIAPI definition. Some Windows OpenGL headers need it
#if !defined(WINGDIAPI) && defined(_WIN32)
#define WINGDIAPI __declspec(dllimport)
#endif
#include <GL/gl.h> // OpenGL 1.1 library
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_21)
#define GRAPHICS_API_OPENGL_33 // OpenGL 2.1 uses mostly OpenGL 3.3 Core functionality
#endif
#if defined(GRAPHICS_API_OPENGL_33)
#if defined(__APPLE__)
#include <OpenGL/gl3.h> // OpenGL 3 library for OSX
#include <OpenGL/gl3ext.h> // OpenGL 3 extensions library for OSX
#else
#define GLAD_IMPLEMENTATION
#if defined(RLGL_STANDALONE)
#include "glad.h" // GLAD extensions loading library, includes OpenGL headers
#else
#include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers
#endif
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#include <EGL/egl.h> // EGL library
#include <GLES2/gl2.h> // OpenGL ES 2.0 library
#include <GLES2/gl2ext.h> // OpenGL ES 2.0 extensions library
#endif
#if defined(RLGL_STANDALONE)
#include <stdarg.h> // Required for: va_list, va_start(), vfprintf(), va_end() [Used only on TraceLog()]
#endif
#if !defined(GRAPHICS_API_OPENGL_11) && defined(SUPPORT_DISTORTION_SHADER)
#include "shader_distortion.h" // Distortion shader to be embedded
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MATRIX_STACK_SIZE 16 // Matrix stack max size
#define MAX_DRAWS_BY_TEXTURE 256 // Draws are organized by texture changes
#define TEMP_VERTEX_BUFFER_SIZE 4096 // Temporal Vertex Buffer (required for vertex-transformations)
// NOTE: Every vertex are 3 floats (12 bytes)
#ifndef GL_SHADING_LANGUAGE_VERSION
#define GL_SHADING_LANGUAGE_VERSION 0x8B8C
#endif
#ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT
#define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#endif
#ifndef GL_ETC1_RGB8_OES
#define GL_ETC1_RGB8_OES 0x8D64
#endif
#ifndef GL_COMPRESSED_RGB8_ETC2
#define GL_COMPRESSED_RGB8_ETC2 0x9274
#endif
#ifndef GL_COMPRESSED_RGBA8_ETC2_EAC
#define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#endif
#ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG
#define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#endif
#ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG
#define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#endif
#ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR
#define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0
#endif
#ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR
#define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7
#endif
#ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT
#define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF
#endif
#ifndef GL_TEXTURE_MAX_ANISOTROPY_EXT
#define GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE
#endif
#if defined(GRAPHICS_API_OPENGL_11)
#define GL_UNSIGNED_SHORT_5_6_5 0x8363
#define GL_UNSIGNED_SHORT_5_5_5_1 0x8034
#define GL_UNSIGNED_SHORT_4_4_4_4 0x8033
#endif
#if defined(GRAPHICS_API_OPENGL_21)
#define GL_LUMINANCE 0x1909
#define GL_LUMINANCE_ALPHA 0x190A
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#define glClearDepth glClearDepthf
#define GL_READ_FRAMEBUFFER GL_FRAMEBUFFER
#define GL_DRAW_FRAMEBUFFER GL_FRAMEBUFFER
#endif
// Default vertex attribute names on shader to set location points
#define DEFAULT_ATTRIB_POSITION_NAME "vertexPosition" // shader-location = 0
#define DEFAULT_ATTRIB_TEXCOORD_NAME "vertexTexCoord" // shader-location = 1
#define DEFAULT_ATTRIB_NORMAL_NAME "vertexNormal" // shader-location = 2
#define DEFAULT_ATTRIB_COLOR_NAME "vertexColor" // shader-location = 3
#define DEFAULT_ATTRIB_TANGENT_NAME "vertexTangent" // shader-location = 4
#define DEFAULT_ATTRIB_TEXCOORD2_NAME "vertexTexCoord2" // shader-location = 5
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Dynamic vertex buffers (position + texcoords + colors + indices arrays)
typedef struct DynamicBuffer {
int vCounter; // vertex position counter to process (and draw) from full buffer
int tcCounter; // vertex texcoord counter to process (and draw) from full buffer
int cCounter; // vertex color counter to process (and draw) from full buffer
float *vertices; // vertex position (XYZ - 3 components per vertex) (shader-location = 0)
float *texcoords; // vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1)
unsigned char *colors; // vertex colors (RGBA - 4 components per vertex) (shader-location = 3)
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
unsigned int *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad)
#elif defined(GRAPHICS_API_OPENGL_ES2)
unsigned short *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad)
// NOTE: 6*2 byte = 12 byte, not alignment problem!
#endif
unsigned int vaoId; // OpenGL Vertex Array Object id
unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data)
} DynamicBuffer;
// Draw call type
// NOTE: Used to track required draw-calls, organized by texture
typedef struct DrawCall {
int vertexCount;
GLuint vaoId;
GLuint textureId;
GLuint shaderId;
Matrix projection;
Matrix modelview;
// TODO: Store additional draw state data
//int blendMode;
//Guint fboId;
} DrawCall;
#if defined(SUPPORT_VR_SIMULATOR)
// VR Stereo rendering configuration for simulator
typedef struct VrStereoConfig {
RenderTexture2D stereoFbo; // VR stereo rendering framebuffer
Shader distortionShader; // VR stereo rendering distortion shader
Rectangle eyesViewport[2]; // VR stereo rendering eyes viewports
Matrix eyesProjection[2]; // VR stereo rendering eyes projection matrices
Matrix eyesViewOffset[2]; // VR stereo rendering eyes view offset matrices
} VrStereoConfig;
#endif
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static Matrix stack[MATRIX_STACK_SIZE];
static int stackCounter = 0;
static Matrix modelview;
static Matrix projection;
static Matrix *currentMatrix;
static int currentMatrixMode;
static int currentDrawMode;
static float currentDepth = -1.0f;
static DynamicBuffer lines; // Default dynamic buffer for lines data
static DynamicBuffer triangles; // Default dynamic buffer for triangles data
static DynamicBuffer quads; // Default dynamic buffer for quads data (used to draw textures)
// Default buffers draw calls
static DrawCall *draws;
static int drawsCounter;
// Temp vertex buffer to be used with rlTranslate, rlRotate, rlScale
static Vector3 *tempBuffer;
static int tempBufferCount = 0;
static bool useTempBuffer = false;
// Shaders
static unsigned int defaultVShaderId; // Default vertex shader id (used by default shader program)
static unsigned int defaultFShaderId; // Default fragment shader Id (used by default shader program)
static Shader defaultShader; // Basic shader, support vertex color and diffuse texture
static Shader currentShader; // Shader to be used on rendering (by default, defaultShader)
// Extension supported flag: VAO
static bool vaoSupported = false; // VAO support (OpenGL ES2 could not support VAO extension)
// Extension supported flag: Compressed textures
static bool texCompETC1Supported = false; // ETC1 texture compression support
static bool texCompETC2Supported = false; // ETC2/EAC texture compression support
static bool texCompPVRTSupported = false; // PVR texture compression support
static bool texCompASTCSupported = false; // ASTC texture compression support
#if defined(SUPPORT_VR_SIMULATOR)
// VR global variables
static VrStereoConfig vrConfig; // VR stereo configuration for simulator
static bool vrSimulatorReady = false; // VR simulator ready flag
static bool vrStereoRender = false; // VR stereo rendering enabled/disabled flag
// NOTE: This flag is useful to render data over stereo image (i.e. FPS)
#endif // defined(SUPPORT_VR_SIMULATOR)
#endif // defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Extension supported flag: Anisotropic filtering
static bool texAnisotropicFilterSupported = false; // Anisotropic texture filtering support
static float maxAnisotropicLevel = 0.0f; // Maximum anisotropy level supported (minimum is 2.0f)
// Extension supported flag: Clamp mirror wrap mode
static bool texClampMirrorSupported = false; // Clamp mirror wrap mode supported
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: VAO functionality is exposed through extensions (OES)
static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays;
static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray;
static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays;
//static PFNGLISVERTEXARRAYOESPROC glIsVertexArray; // NOTE: Fails in WebGL, omitted
#endif
static bool debugMarkerSupported = false;
// Compressed textures support flags
static bool texCompDXTSupported = false; // DDS texture compression support
static bool texNPOTSupported = false; // NPOT textures full support
static bool texFloatSupported = false; // float textures support (32 bit per channel)
static int blendMode = 0; // Track current blending mode
// White texture useful for plain color polys (required by shader)
static unsigned int whiteTexture;
// Default framebuffer size
static int screenWidth; // Default framebuffer width
static int screenHeight; // Default framebuffer height
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static unsigned int CompileShader(const char *shaderStr, int type); // Compile custom shader and return shader id
static unsigned int LoadShaderProgram(unsigned int vShaderId, unsigned int fShaderId); // Load custom shader program
static Shader LoadShaderDefault(void); // Load default shader (just vertex positioning and texture coloring)
static void SetShaderDefaultLocations(Shader *shader); // Bind default shader locations (attributes and uniforms)
static void UnloadShaderDefault(void); // Unload default shader
static void LoadBuffersDefault(void); // Load default internal buffers (lines, triangles, quads)
static void UpdateBuffersDefault(void); // Update default internal buffers (VAOs/VBOs) with vertex data
static void DrawBuffersDefault(void); // Draw default internal buffers vertex data
static void UnloadBuffersDefault(void); // Unload default internal buffers vertex data from CPU and GPU
static void GenDrawCube(void); // Generate and draw cube
static void GenDrawQuad(void); // Generate and draw quad
#if defined(SUPPORT_VR_SIMULATOR)
static void SetStereoConfig(VrDeviceInfo info); // Configure stereo rendering (including distortion shader) with HMD device parameters
static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView); // Set internal projection and modelview matrix depending on eye
#endif
#endif // defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Get OpenGL internal formats and data type from raylib PixelFormat
static void GetGlFormats(int format, int *glInternalFormat, int *glFormat, int *glType);
#if defined(GRAPHICS_API_OPENGL_11)
static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight);
static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight);
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void rlMatrixMode(int mode)
{
switch (mode)
{
case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break;
case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break;
case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break;
default: break;
}
}
void rlFrustum(double left, double right, double bottom, double top, double zNear, double zFar)
{
glFrustum(left, right, bottom, top, zNear, zFar);
}
void rlOrtho(double left, double right, double bottom, double top, double zNear, double zFar)
{
glOrtho(left, right, bottom, top, zNear, zFar);
}
void rlPushMatrix(void) { glPushMatrix(); }
void rlPopMatrix(void) { glPopMatrix(); }
void rlLoadIdentity(void) { glLoadIdentity(); }
void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); }
void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); }
void rlScalef(float x, float y, float z) { glScalef(x, y, z); }
void rlMultMatrixf(float *matf) { glMultMatrixf(matf); }
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Choose the current matrix to be transformed
void rlMatrixMode(int mode)
{
if (mode == RL_PROJECTION) currentMatrix = &projection;
else if (mode == RL_MODELVIEW) currentMatrix = &modelview;
//else if (mode == RL_TEXTURE) // Not supported
currentMatrixMode = mode;
}
// Push the current matrix to stack
void rlPushMatrix(void)
{
if (stackCounter == MATRIX_STACK_SIZE - 1)
{
TraceLog(LOG_ERROR, "Stack Buffer Overflow (MAX %i Matrix)", MATRIX_STACK_SIZE);
}
stack[stackCounter] = *currentMatrix;
rlLoadIdentity(); // TODO: Review matrix stack logic!
stackCounter++;
if (currentMatrixMode == RL_MODELVIEW) useTempBuffer = true;
}
// Pop lattest inserted matrix from stack
void rlPopMatrix(void)
{
if (stackCounter > 0)
{
Matrix mat = stack[stackCounter - 1];
*currentMatrix = mat;
stackCounter--;
}
}
// Reset current matrix to identity matrix
void rlLoadIdentity(void)
{
*currentMatrix = MatrixIdentity();
}
// Multiply the current matrix by a translation matrix
void rlTranslatef(float x, float y, float z)
{
Matrix matTranslation = MatrixTranslate(x, y, z);
// NOTE: We transpose matrix with multiplication order
*currentMatrix = MatrixMultiply(matTranslation, *currentMatrix);
}
// Multiply the current matrix by a rotation matrix
void rlRotatef(float angleDeg, float x, float y, float z)
{
Matrix matRotation = MatrixIdentity();
Vector3 axis = (Vector3){ x, y, z };
matRotation = MatrixRotate(Vector3Normalize(axis), angleDeg*DEG2RAD);
// NOTE: We transpose matrix with multiplication order
*currentMatrix = MatrixMultiply(matRotation, *currentMatrix);
}
// Multiply the current matrix by a scaling matrix
void rlScalef(float x, float y, float z)
{
Matrix matScale = MatrixScale(x, y, z);
// NOTE: We transpose matrix with multiplication order
*currentMatrix = MatrixMultiply(matScale, *currentMatrix);
}
// Multiply the current matrix by another matrix
void rlMultMatrixf(float *matf)
{
// Matrix creation from array
Matrix mat = { matf[0], matf[4], matf[8], matf[12],
matf[1], matf[5], matf[9], matf[13],
matf[2], matf[6], matf[10], matf[14],
matf[3], matf[7], matf[11], matf[15] };
*currentMatrix = MatrixMultiply(*currentMatrix, mat);
}
// Multiply the current matrix by a perspective matrix generated by parameters
void rlFrustum(double left, double right, double bottom, double top, double near, double far)
{
Matrix matPerps = MatrixFrustum(left, right, bottom, top, near, far);
*currentMatrix = MatrixMultiply(*currentMatrix, matPerps);
}
// Multiply the current matrix by an orthographic matrix generated by parameters
void rlOrtho(double left, double right, double bottom, double top, double near, double far)
{
Matrix matOrtho = MatrixOrtho(left, right, bottom, top, near, far);
*currentMatrix = MatrixMultiply(*currentMatrix, matOrtho);
}
#endif
// Set the viewport area (transformation from normalized device coordinates to window coordinates)
// NOTE: Updates global variables: screenWidth, screenHeight
void rlViewport(int x, int y, int width, int height)
{
glViewport(x, y, width, height);
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vertex level operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void rlBegin(int mode)
{
switch (mode)
{
case RL_LINES: glBegin(GL_LINES); break;
case RL_TRIANGLES: glBegin(GL_TRIANGLES); break;
case RL_QUADS: glBegin(GL_QUADS); break;
default: break;
}
}
void rlEnd() { glEnd(); }
void rlVertex2i(int x, int y) { glVertex2i(x, y); }
void rlVertex2f(float x, float y) { glVertex2f(x, y); }
void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); }
void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); }
void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); }
void rlColor4ub(byte r, byte g, byte b, byte a) { glColor4ub(r, g, b, a); }
void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); }
void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); }
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize drawing mode (how to organize vertex)
void rlBegin(int mode)
{
// Draw mode can only be RL_LINES, RL_TRIANGLES and RL_QUADS
currentDrawMode = mode;
}
// Finish vertex providing
void rlEnd(void)
{
if (useTempBuffer)
{
// NOTE: In this case, *currentMatrix is already transposed because transposing has been applied
// independently to translation-scale-rotation matrices -> t(M1 x M2) = t(M2) x t(M1)
// This way, rlTranslatef(), rlRotatef()... behaviour is the same than OpenGL 1.1
// Apply transformation matrix to all temp vertices
for (int i = 0; i < tempBufferCount; i++) tempBuffer[i] = Vector3Transform(tempBuffer[i], *currentMatrix);
// Deactivate tempBuffer usage to allow rlVertex3f do its job
useTempBuffer = false;
// Copy all transformed vertices to right VAO
for (int i = 0; i < tempBufferCount; i++) rlVertex3f(tempBuffer[i].x, tempBuffer[i].y, tempBuffer[i].z);
// Reset temp buffer
tempBufferCount = 0;
}
// Make sure vertexCount is the same for vertices-texcoords-normals-colors
// NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls.
switch (currentDrawMode)
{
case RL_LINES:
{
if (lines.vCounter != lines.cCounter)
{
int addColors = lines.vCounter - lines.cCounter;
for (int i = 0; i < addColors; i++)
{
lines.colors[4*lines.cCounter] = lines.colors[4*lines.cCounter - 4];
lines.colors[4*lines.cCounter + 1] = lines.colors[4*lines.cCounter - 3];
lines.colors[4*lines.cCounter + 2] = lines.colors[4*lines.cCounter - 2];
lines.colors[4*lines.cCounter + 3] = lines.colors[4*lines.cCounter - 1];
lines.cCounter++;
}
}
} break;
case RL_TRIANGLES:
{
if (triangles.vCounter != triangles.cCounter)
{
int addColors = triangles.vCounter - triangles.cCounter;
for (int i = 0; i < addColors; i++)
{
triangles.colors[4*triangles.cCounter] = triangles.colors[4*triangles.cCounter - 4];
triangles.colors[4*triangles.cCounter + 1] = triangles.colors[4*triangles.cCounter - 3];
triangles.colors[4*triangles.cCounter + 2] = triangles.colors[4*triangles.cCounter - 2];
triangles.colors[4*triangles.cCounter + 3] = triangles.colors[4*triangles.cCounter - 1];
triangles.cCounter++;
}
}
if (triangles.vCounter != triangles.tcCounter)
{
int addTexCoords = triangles.vCounter - triangles.tcCounter;
for (int i = 0; i < addTexCoords; i++)
{
triangles.texcoords[2*triangles.tcCounter] = 0.0f;
triangles.texcoords[2*triangles.tcCounter + 1] = 0.0f;
triangles.tcCounter++;
}
}
} break;
case RL_QUADS:
{
// Make sure colors count match vertex count
if (quads.vCounter != quads.cCounter)
{
int addColors = quads.vCounter - quads.cCounter;
for (int i = 0; i < addColors; i++)
{
quads.colors[4*quads.cCounter] = quads.colors[4*quads.cCounter - 4];
quads.colors[4*quads.cCounter + 1] = quads.colors[4*quads.cCounter - 3];
quads.colors[4*quads.cCounter + 2] = quads.colors[4*quads.cCounter - 2];
quads.colors[4*quads.cCounter + 3] = quads.colors[4*quads.cCounter - 1];
quads.cCounter++;
}
}
// Make sure texcoords count match vertex count
if (quads.vCounter != quads.tcCounter)
{
int addTexCoords = quads.vCounter - quads.tcCounter;
for (int i = 0; i < addTexCoords; i++)
{
quads.texcoords[2*quads.tcCounter] = 0.0f;
quads.texcoords[2*quads.tcCounter + 1] = 0.0f;
quads.tcCounter++;
}
}
// TODO: Make sure normals count match vertex count... if normals support is added in a future... :P
} break;
default: break;
}
// NOTE: Depth increment is dependant on rlOrtho(): z-near and z-far values,
// as well as depth buffer bit-depth (16bit or 24bit or 32bit)
// Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits)
currentDepth += (1.0f/20000.0f);
// Verify internal buffers limits
// NOTE: This check is combined with usage of rlCheckBufferLimit()
if ((lines.vCounter/2 >= MAX_LINES_BATCH - 2) ||
(triangles.vCounter/3 >= MAX_TRIANGLES_BATCH - 3) ||
(quads.vCounter/4 >= MAX_QUADS_BATCH - 4)) rlglDraw();
}
// Define one vertex (position)
void rlVertex3f(float x, float y, float z)
{
if (useTempBuffer)
{
tempBuffer[tempBufferCount].x = x;
tempBuffer[tempBufferCount].y = y;
tempBuffer[tempBufferCount].z = z;
tempBufferCount++;
}
else
{
switch (currentDrawMode)
{
case RL_LINES:
{
// Verify that MAX_LINES_BATCH limit not reached
if (lines.vCounter/2 < MAX_LINES_BATCH)
{
lines.vertices[3*lines.vCounter] = x;
lines.vertices[3*lines.vCounter + 1] = y;
lines.vertices[3*lines.vCounter + 2] = z;
lines.vCounter++;
}
else TraceLog(LOG_ERROR, "MAX_LINES_BATCH overflow");
} break;
case RL_TRIANGLES:
{
// Verify that MAX_TRIANGLES_BATCH limit not reached
if (triangles.vCounter/3 < MAX_TRIANGLES_BATCH)
{
triangles.vertices[3*triangles.vCounter] = x;
triangles.vertices[3*triangles.vCounter + 1] = y;
triangles.vertices[3*triangles.vCounter + 2] = z;
triangles.vCounter++;
draws[drawsCounter - 1].vertexCount++;
}
else TraceLog(LOG_ERROR, "MAX_TRIANGLES_BATCH overflow");
} break;
case RL_QUADS:
{
// Verify that MAX_QUADS_BATCH limit not reached
if (quads.vCounter/4 < MAX_QUADS_BATCH)
{
quads.vertices[3*quads.vCounter] = x;
quads.vertices[3*quads.vCounter + 1] = y;
quads.vertices[3*quads.vCounter + 2] = z;
quads.vCounter++;
draws[drawsCounter - 1].vertexCount++;
}
else TraceLog(LOG_ERROR, "MAX_QUADS_BATCH overflow");
} break;
default: break;
}
}
}
// Define one vertex (position)
void rlVertex2f(float x, float y)
{
rlVertex3f(x, y, currentDepth);
}
// Define one vertex (position)
void rlVertex2i(int x, int y)
{
rlVertex3f((float)x, (float)y, currentDepth);
}
// Define one vertex (texture coordinate)
// NOTE: Texture coordinates are limited to QUADS only
void rlTexCoord2f(float x, float y)
{
if (currentDrawMode == RL_QUADS)
{
quads.texcoords[2*quads.tcCounter] = x;
quads.texcoords[2*quads.tcCounter + 1] = y;
quads.tcCounter++;
}
else if (currentDrawMode == RL_TRIANGLES)
{
triangles.texcoords[2*triangles.tcCounter] = x;
triangles.texcoords[2*triangles.tcCounter + 1] = y;
triangles.tcCounter++;
}
}
// Define one vertex (normal)
// NOTE: Normals limited to TRIANGLES only ?
void rlNormal3f(float x, float y, float z)
{
// TODO: Normals usage...
}
// Define one vertex (color)
void rlColor4ub(byte x, byte y, byte z, byte w)
{
switch (currentDrawMode)
{
case RL_LINES:
{
lines.colors[4*lines.cCounter] = x;
lines.colors[4*lines.cCounter + 1] = y;
lines.colors[4*lines.cCounter + 2] = z;
lines.colors[4*lines.cCounter + 3] = w;
lines.cCounter++;
} break;
case RL_TRIANGLES:
{
triangles.colors[4*triangles.cCounter] = x;
triangles.colors[4*triangles.cCounter + 1] = y;
triangles.colors[4*triangles.cCounter + 2] = z;
triangles.colors[4*triangles.cCounter + 3] = w;
triangles.cCounter++;
} break;
case RL_QUADS:
{
quads.colors[4*quads.cCounter] = x;
quads.colors[4*quads.cCounter + 1] = y;
quads.colors[4*quads.cCounter + 2] = z;
quads.colors[4*quads.cCounter + 3] = w;
quads.cCounter++;
} break;
default: break;
}
}
// Define one vertex (color)
void rlColor4f(float r, float g, float b, float a)
{
rlColor4ub((byte)(r*255), (byte)(g*255), (byte)(b*255), (byte)(a*255));
}
// Define one vertex (color)
void rlColor3f(float x, float y, float z)
{
rlColor4ub((byte)(x*255), (byte)(y*255), (byte)(z*255), 255);
}
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - OpenGL equivalent functions (common to 1.1, 3.3+, ES2)
//----------------------------------------------------------------------------------
// Enable texture usage
void rlEnableTexture(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, id);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (draws[drawsCounter - 1].textureId != id)
{
if (draws[drawsCounter - 1].vertexCount > 0) drawsCounter++;
if (drawsCounter >= MAX_DRAWS_BY_TEXTURE)
{
rlglDraw();
drawsCounter = 1;
}
draws[drawsCounter - 1].textureId = id;
draws[drawsCounter - 1].vertexCount = 0;
}
#endif
}
// Disable texture usage
void rlDisableTexture(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#else
// NOTE: If quads batch limit is reached,
// we force a draw call and next batch starts
if (quads.vCounter/4 >= MAX_QUADS_BATCH||triangles.vCounter/3 >= MAX_TRIANGLES_BATCH) rlglDraw();
#endif
}
// Set texture parameters (wrap mode/filter mode)
void rlTextureParameters(unsigned int id, int param, int value)
{
glBindTexture(GL_TEXTURE_2D, id);
switch (param)
{
case RL_TEXTURE_WRAP_S:
case RL_TEXTURE_WRAP_T:
{
if ((value == RL_WRAP_CLAMP_MIRROR) && !texClampMirrorSupported) TraceLog(LOG_WARNING, "Clamp mirror wrap mode not supported");
else glTexParameteri(GL_TEXTURE_2D, param, value);
} break;
case RL_TEXTURE_MAG_FILTER:
case RL_TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_2D, param, value); break;
case RL_TEXTURE_ANISOTROPIC_FILTER:
{
if (value <= maxAnisotropicLevel) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value);
else if (maxAnisotropicLevel > 0.0f)
{
TraceLog(LOG_WARNING, "[TEX ID %i] Maximum anisotropic filter level supported is %iX", id, maxAnisotropicLevel);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value);
}
else TraceLog(LOG_WARNING, "Anisotropic filtering not supported");
} break;
default: break;
}
glBindTexture(GL_TEXTURE_2D, 0);
}
// Enable rendering to texture (fbo)
void rlEnableRenderTexture(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindFramebuffer(GL_FRAMEBUFFER, id);
//glDisable(GL_CULL_FACE); // Allow double side drawing for texture flipping
//glCullFace(GL_FRONT);
#endif
}
// Disable rendering to texture
void rlDisableRenderTexture(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindFramebuffer(GL_FRAMEBUFFER, 0);
//glEnable(GL_CULL_FACE);
//glCullFace(GL_BACK);
#endif
}
// Enable depth test
void rlEnableDepthTest(void)
{
glEnable(GL_DEPTH_TEST);
}
// Disable depth test
void rlDisableDepthTest(void)
{
glDisable(GL_DEPTH_TEST);
}
// Enable wire mode
void rlEnableWireMode(void)
{
#if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#endif
}
// Disable wire mode
void rlDisableWireMode(void)
{
#if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
}
// Unload texture from GPU memory
void rlDeleteTextures(unsigned int id)
{
if (id > 0) glDeleteTextures(1, &id);
}
// Unload render texture from GPU memory
void rlDeleteRenderTextures(RenderTexture2D target)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (target.id > 0) glDeleteFramebuffers(1, &target.id);
if (target.texture.id > 0) glDeleteTextures(1, &target.texture.id);
if (target.depth.id > 0) glDeleteTextures(1, &target.depth.id);
TraceLog(LOG_INFO, "[FBO ID %i] Unloaded render texture data from VRAM (GPU)", target.id);
#endif
}
// Unload shader from GPU memory
void rlDeleteShader(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (id != 0) glDeleteProgram(id);
#endif
}
// Unload vertex data (VAO) from GPU memory
void rlDeleteVertexArrays(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (vaoSupported)
{
if (id != 0) glDeleteVertexArrays(1, &id);
TraceLog(LOG_INFO, "[VAO ID %i] Unloaded model data from VRAM (GPU)", id);
}
#endif
}
// Unload vertex data (VBO) from GPU memory
void rlDeleteBuffers(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (id != 0)
{
glDeleteBuffers(1, &id);
if (!vaoSupported) TraceLog(LOG_INFO, "[VBO ID %i] Unloaded model vertex data from VRAM (GPU)", id);
}
#endif
}
// Clear color buffer with color
void rlClearColor(byte r, byte g, byte b, byte a)
{
// Color values clamp to 0.0f(0) and 1.0f(255)
float cr = (float)r/255;
float cg = (float)g/255;
float cb = (float)b/255;
float ca = (float)a/255;
glClearColor(cr, cg, cb, ca);
}
// Clear used screen buffers (color and depth)
void rlClearScreenBuffers(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D)
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used...
}
//----------------------------------------------------------------------------------
// Module Functions Definition - rlgl Functions
//----------------------------------------------------------------------------------
// Initialize rlgl: OpenGL extensions, default buffers/shaders/textures, OpenGL states
void rlglInit(int width, int height)
{
// Check OpenGL information and capabilities
//------------------------------------------------------------------------------
// Print current OpenGL and GLSL version
TraceLog(LOG_INFO, "GPU: Vendor: %s", glGetString(GL_VENDOR));
TraceLog(LOG_INFO, "GPU: Renderer: %s", glGetString(GL_RENDERER));
TraceLog(LOG_INFO, "GPU: Version: %s", glGetString(GL_VERSION));
TraceLog(LOG_INFO, "GPU: GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION));
// NOTE: We can get a bunch of extra information about GPU capabilities (glGet*)
//int maxTexSize;
//glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexSize);
//TraceLog(LOG_INFO, "GL_MAX_TEXTURE_SIZE: %i", maxTexSize);
//GL_MAX_TEXTURE_IMAGE_UNITS
//GL_MAX_VIEWPORT_DIMS
//int numAuxBuffers;
//glGetIntegerv(GL_AUX_BUFFERS, &numAuxBuffers);
//TraceLog(LOG_INFO, "GL_AUX_BUFFERS: %i", numAuxBuffers);
//GLint numComp = 0;
//GLint format[32] = { 0 };
//glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numComp);
//glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, format);
//for (int i = 0; i < numComp; i++) TraceLog(LOG_INFO, "Supported compressed format: 0x%x", format[i]);
// NOTE: We don't need that much data on screen... right now...
#if defined(GRAPHICS_API_OPENGL_11)
//TraceLog(LOG_INFO, "OpenGL 1.1 (or driver default) profile initialized");
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Get supported extensions list
GLint numExt = 0;
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: On OpenGL 3.3 VAO and NPOT are supported by default
vaoSupported = true;
texNPOTSupported = true;
texFloatSupported = true;
// We get a list of available extensions and we check for some of them (compressed textures)
// NOTE: We don't need to check again supported extensions but we do (GLAD already dealt with that)
glGetIntegerv(GL_NUM_EXTENSIONS, &numExt);
#ifdef _MSC_VER
const char **extList = malloc(sizeof(const char *)*numExt);
#else
const char *extList[numExt];
#endif
for (int i = 0; i < numExt; i++) extList[i] = (char *)glGetStringi(GL_EXTENSIONS, i);
#elif defined(GRAPHICS_API_OPENGL_ES2)
char *extensions = (char *)glGetString(GL_EXTENSIONS); // One big const string
// NOTE: We have to duplicate string because glGetString() returns a const value
// If not duplicated, it fails in some systems (Raspberry Pi)
// Equivalent to function: char *strdup(const char *str)
char *extensionsDup;
size_t len = strlen(extensions) + 1;
void *newstr = malloc(len);
if (newstr == NULL) extensionsDup = NULL;
extensionsDup = (char *)memcpy(newstr, extensions, len);
// NOTE: String could be splitted using strtok() function (string.h)
// NOTE: strtok() modifies the received string, it can not be const
char *extList[512]; // Allocate 512 strings pointers (2 KB)
extList[numExt] = strtok(extensionsDup, " ");
while (extList[numExt] != NULL)
{
numExt++;
extList[numExt] = strtok(NULL, " ");
}
free(extensionsDup); // Duplicated string must be deallocated
numExt -= 1;
#endif
TraceLog(LOG_INFO, "Number of supported extensions: %i", numExt);
// Show supported extensions
//for (int i = 0; i < numExt; i++) TraceLog(LOG_INFO, "Supported extension: %s", extList[i]);
// Check required extensions
for (int i = 0; i < numExt; i++)
{
#if defined(GRAPHICS_API_OPENGL_ES2)
// Check VAO support
// NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature
if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0)
{
vaoSupported = true;
// The extension is supported by our hardware and driver, try to get related functions pointers
// NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance...
glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES");
glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES");
glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES");
//glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted
}
// Check NPOT textures support
// NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature
if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) texNPOTSupported = true;
// Check texture float support
if (strcmp(extList[i], (const char *)"GL_OES_texture_float") == 0) texFloatSupported = true;
#endif
// DDS texture compression support
if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) texCompDXTSupported = true;
// ETC1 texture compression support
if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) texCompETC1Supported = true;
// ETC2/EAC texture compression support
if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) texCompETC2Supported = true;
// PVR texture compression support
if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) texCompPVRTSupported = true;
// ASTC texture compression support
if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) texCompASTCSupported = true;
// Anisotropic texture filter support
if (strcmp(extList[i], (const char *)"GL_EXT_texture_filter_anisotropic") == 0)
{
texAnisotropicFilterSupported = true;
glGetFloatv(0x84FF, &maxAnisotropicLevel); // GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT
}
// Clamp mirror wrap mode supported
if (strcmp(extList[i], (const char *)"GL_EXT_texture_mirror_clamp") == 0) texClampMirrorSupported = true;
// Debug marker support
if(strcmp(extList[i], (const char *)"GL_EXT_debug_marker") == 0) debugMarkerSupported = true;
}
#if defined(_MSC_VER)
//free(extList);
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
if (vaoSupported) TraceLog(LOG_INFO, "[EXTENSION] VAO extension detected, VAO functions initialized successfully");
else TraceLog(LOG_WARNING, "[EXTENSION] VAO extension not found, VAO usage not supported");
if (texNPOTSupported) TraceLog(LOG_INFO, "[EXTENSION] NPOT textures extension detected, full NPOT textures supported");
else TraceLog(LOG_WARNING, "[EXTENSION] NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)");
#endif
if (texCompDXTSupported) TraceLog(LOG_INFO, "[EXTENSION] DXT compressed textures supported");
if (texCompETC1Supported) TraceLog(LOG_INFO, "[EXTENSION] ETC1 compressed textures supported");
if (texCompETC2Supported) TraceLog(LOG_INFO, "[EXTENSION] ETC2/EAC compressed textures supported");
if (texCompPVRTSupported) TraceLog(LOG_INFO, "[EXTENSION] PVRT compressed textures supported");
if (texCompASTCSupported) TraceLog(LOG_INFO, "[EXTENSION] ASTC compressed textures supported");
if (texAnisotropicFilterSupported) TraceLog(LOG_INFO, "[EXTENSION] Anisotropic textures filtering supported (max: %.0fX)", maxAnisotropicLevel);
if (texClampMirrorSupported) TraceLog(LOG_INFO, "[EXTENSION] Clamp mirror wrap texture mode supported");
if (debugMarkerSupported) TraceLog(LOG_INFO, "[EXTENSION] Debug Marker supported");
// Initialize buffers, default shaders and default textures
//----------------------------------------------------------
// Init default white texture
unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes)
whiteTexture = rlLoadTexture(pixels, 1, 1, UNCOMPRESSED_R8G8B8A8, 1);
if (whiteTexture != 0) TraceLog(LOG_INFO, "[TEX ID %i] Base white texture loaded successfully", whiteTexture);
else TraceLog(LOG_WARNING, "Base white texture could not be loaded");
// Init default Shader (customized for GL 3.3 and ES2)
defaultShader = LoadShaderDefault();
currentShader = defaultShader;
// Init default vertex arrays buffers (lines, triangles, quads)
LoadBuffersDefault();
// Init temp vertex buffer, used when transformation required (translate, rotate, scale)
tempBuffer = (Vector3 *)malloc(sizeof(Vector3)*TEMP_VERTEX_BUFFER_SIZE);
for (int i = 0; i < TEMP_VERTEX_BUFFER_SIZE; i++) tempBuffer[i] = Vector3Zero();
// Init draw calls tracking system
draws = (DrawCall *)malloc(sizeof(DrawCall)*MAX_DRAWS_BY_TEXTURE);
for (int i = 0; i < MAX_DRAWS_BY_TEXTURE; i++)
{
draws[i].textureId = 0;
draws[i].vertexCount = 0;
}
drawsCounter = 1;
draws[drawsCounter - 1].textureId = whiteTexture;
currentDrawMode = RL_TRIANGLES; // Set default draw mode
// Init internal matrix stack (emulating OpenGL 1.1)
for (int i = 0; i < MATRIX_STACK_SIZE; i++) stack[i] = MatrixIdentity();
// Init internal projection and modelview matrices
projection = MatrixIdentity();
modelview = MatrixIdentity();
currentMatrix = &modelview;
#endif // defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize OpenGL default states
//----------------------------------------------------------
// Init state: Depth test
glDepthFunc(GL_LEQUAL); // Type of depth testing to apply
glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D)
// Init state: Blending mode
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed)
glEnable(GL_BLEND); // Enable color blending (required to work with transparencies)
// Init state: Culling
// NOTE: All shapes/models triangles are drawn CCW
glCullFace(GL_BACK); // Cull the back face (default)
glFrontFace(GL_CCW); // Front face are defined counter clockwise (default)
glEnable(GL_CULL_FACE); // Enable backface culling
#if defined(GRAPHICS_API_OPENGL_11)
// Init state: Color hints (deprecated in OpenGL 3.0+)
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation
glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation)
#endif
// Init state: Color/Depth buffers clear
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black)
glClearDepth(1.0f); // Set clear depth value (default)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers (depth buffer required for 3D)
// Store screen size into global variables
screenWidth = width;
screenHeight = height;
TraceLog(LOG_INFO, "OpenGL default states initialized successfully");
}
// Vertex Buffer Object deinitialization (memory free)
void rlglClose(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
UnloadShaderDefault(); // Unload default shader
UnloadBuffersDefault(); // Unload default buffers (lines, triangles, quads)
glDeleteTextures(1, &whiteTexture); // Unload default texture
TraceLog(LOG_INFO, "[TEX ID %i] Unloaded texture data (base white texture) from VRAM", whiteTexture);
free(draws);
#endif
}
// Drawing batches: triangles, quads, lines
void rlglDraw(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: In a future version, models could be stored in a stack...
//for (int i = 0; i < modelsCount; i++) rlDrawMesh(models[i]->mesh, models[i]->material, models[i]->transform);
// NOTE: Default buffers upload and draw
UpdateBuffersDefault();
DrawBuffersDefault(); // NOTE: Stereo rendering is checked inside
#endif
}
// Returns current OpenGL version
int rlGetVersion(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
return OPENGL_11;
#elif defined(GRAPHICS_API_OPENGL_21)
#if defined(__APPLE__)
return OPENGL_33; // NOTE: Force OpenGL 3.3 on OSX
#else
return OPENGL_21;
#endif
#elif defined(GRAPHICS_API_OPENGL_33)
return OPENGL_33;
#elif defined(GRAPHICS_API_OPENGL_ES2)
return OPENGL_ES_20;
#endif
}
// Check internal buffer overflow for a given number of vertex
bool rlCheckBufferLimit(int type, int vCount)
{
bool overflow = false;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
switch (type)
{
case RL_LINES: overflow = ((lines.vCounter + vCount)/2 >= MAX_LINES_BATCH); break;
case RL_TRIANGLES: overflow = ((triangles.vCounter + vCount)/3 >= MAX_TRIANGLES_BATCH); break;
case RL_QUADS: overflow = ((quads.vCounter + vCount)/4 >= MAX_QUADS_BATCH); break;
default: break;
}
#endif
return overflow;
}
// Set debug marker
void rlSetDebugMarker(const char *text)
{
#if defined(GRAPHICS_API_OPENGL_33)
if (debugMarkerSupported) glInsertEventMarkerEXT(0, text);
#endif
}
// Load OpenGL extensions
// NOTE: External loader function could be passed as a pointer
void rlLoadExtensions(void *loader)
{
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions (and lower versions)
#if !defined(__APPLE__)
if (!gladLoadGLLoader((GLADloadproc)loader)) TraceLog(LOG_WARNING, "GLAD: Cannot load OpenGL extensions");
else TraceLog(LOG_INFO, "GLAD: OpenGL extensions loaded successfully");
#if defined(GRAPHICS_API_OPENGL_21)
if (GLAD_GL_VERSION_2_1) TraceLog(LOG_INFO, "OpenGL 2.1 profile supported");
#elif defined(GRAPHICS_API_OPENGL_33)
if(GLAD_GL_VERSION_3_3) TraceLog(LOG_INFO, "OpenGL 3.3 Core profile supported");
else TraceLog(LOG_ERROR, "OpenGL 3.3 Core profile not supported");
#endif
#endif
// With GLAD, we can check if an extension is supported using the GLAD_GL_xxx booleans
//if (GLAD_GL_ARB_vertex_array_object) // Use GL_ARB_vertex_array_object
#endif
}
// Get world coordinates from screen coordinates
Vector3 rlUnproject(Vector3 source, Matrix proj, Matrix view)
{
Vector3 result = { 0.0f, 0.0f, 0.0f };
// Calculate unproject matrix (multiply view patrix by projection matrix) and invert it
Matrix matViewProj = MatrixMultiply(view, proj);
matViewProj = MatrixInvert(matViewProj);
// Create quaternion from source point
Quaternion quat = { source.x, source.y, source.z, 1.0f };
// Multiply quat point by unproject matrix
quat = QuaternionTransform(quat, matViewProj);
// Normalized world points in vectors
result.x = quat.x/quat.w;
result.y = quat.y/quat.w;
result.z = quat.z/quat.w;
return result;
}
// Convert image data to OpenGL texture (returns OpenGL valid Id)
unsigned int rlLoadTexture(void *data, int width, int height, int format, int mipmapCount)
{
glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding
GLuint id = 0;
// Check texture format support by OpenGL 1.1 (compressed textures not supported)
#if defined(GRAPHICS_API_OPENGL_11)
if (format >= COMPRESSED_DXT1_RGB)
{
TraceLog(LOG_WARNING, "OpenGL 1.1 does not support GPU compressed texture formats");
return id;
}
#endif
if ((!texCompDXTSupported) && ((format == COMPRESSED_DXT1_RGB) || (format == COMPRESSED_DXT1_RGBA) ||
(format == COMPRESSED_DXT3_RGBA) || (format == COMPRESSED_DXT5_RGBA)))
{
TraceLog(LOG_WARNING, "DXT compressed texture format not supported");
return id;
}
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((!texCompETC1Supported) && (format == COMPRESSED_ETC1_RGB))
{
TraceLog(LOG_WARNING, "ETC1 compressed texture format not supported");
return id;
}
if ((!texCompETC2Supported) && ((format == COMPRESSED_ETC2_RGB) || (format == COMPRESSED_ETC2_EAC_RGBA)))
{
TraceLog(LOG_WARNING, "ETC2 compressed texture format not supported");
return id;
}
if ((!texCompPVRTSupported) && ((format == COMPRESSED_PVRT_RGB) || (format == COMPRESSED_PVRT_RGBA)))
{
TraceLog(LOG_WARNING, "PVRT compressed texture format not supported");
return id;
}
if ((!texCompASTCSupported) && ((format == COMPRESSED_ASTC_4x4_RGBA) || (format == COMPRESSED_ASTC_8x8_RGBA)))
{
TraceLog(LOG_WARNING, "ASTC compressed texture format not supported");
return id;
}
#endif
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glGenTextures(1, &id); // Generate Pointer to the texture
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
//glActiveTexture(GL_TEXTURE0); // If not defined, using GL_TEXTURE0 by default (shader texture)
#endif
glBindTexture(GL_TEXTURE_2D, id);
int mipWidth = width;
int mipHeight = height;
int mipOffset = 0; // Mipmap data offset
TraceLog(LOG_DEBUG, "Load texture from data memory address: 0x%x", data);
// Load the different mipmap levels
for (int i = 0; i < mipmapCount; i++)
{
unsigned int mipSize = GetPixelDataSize(mipWidth, mipHeight, format);
int glInternalFormat, glFormat, glType;
GetGlFormats(format, &glInternalFormat, &glFormat, &glType);
TraceLog(LOG_DEBUG, "Load mipmap level %i (%i x %i), size: %i, offset: %i", i, mipWidth, mipHeight, mipSize, mipOffset);
if (glInternalFormat != -1)
{
if (format < COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, glFormat, glType, (unsigned char *)data + mipOffset);
#if !defined(GRAPHICS_API_OPENGL_11)
else glCompressedTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, mipSize, (unsigned char *)data + mipOffset);
#endif
#if defined(GRAPHICS_API_OPENGL_33)
if (format == UNCOMPRESSED_GRAYSCALE)
{
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE };
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
else if (format == UNCOMPRESSED_GRAY_ALPHA)
{
#if defined(GRAPHICS_API_OPENGL_21)
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA };
#elif defined(GRAPHICS_API_OPENGL_33)
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN };
#endif
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
#endif
}
mipWidth /= 2;
mipHeight /= 2;
mipOffset += mipSize;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
}
// Texture parameters configuration
// NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used
if (texNPOTSupported)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis
}
else
{
// NOTE: If using negative texture coordinates (LoadOBJ()), it does not work!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis
}
#else
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis
#endif
// Magnification and minification filters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR
#if defined(GRAPHICS_API_OPENGL_33)
if (mipmapCount > 1)
{
// Activate Trilinear filtering if mipmaps are available
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
}
#endif
// At this point we have the texture loaded in GPU and texture parameters configured
// NOTE: If mipmaps were not in data, they are not generated automatically
// Unbind current texture
glBindTexture(GL_TEXTURE_2D, 0);
if (id > 0) TraceLog(LOG_INFO, "[TEX ID %i] Texture created successfully (%ix%i - %i mipmaps)", id, width, height, mipmapCount);
else TraceLog(LOG_WARNING, "Texture could not be created");
return id;
}
// Update already loaded texture in GPU with new data
void rlUpdateTexture(unsigned int id, int width, int height, int format, const void *data)
{
glBindTexture(GL_TEXTURE_2D, id);
int glInternalFormat, glFormat, glType;
GetGlFormats(format, &glInternalFormat, &glFormat, &glType);
if ((glInternalFormat != -1) && (format < COMPRESSED_DXT1_RGB))
{
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, glFormat, glType, (unsigned char *)data);
}
else TraceLog(LOG_WARNING, "Texture format updating not supported");
}
// Unload texture from GPU memory
void rlUnloadTexture(unsigned int id)
{
if (id > 0) glDeleteTextures(1, &id);
}
// Load a texture to be used for rendering (fbo with color and depth attachments)
RenderTexture2D rlLoadRenderTexture(int width, int height)
{
RenderTexture2D target;
target.id = 0;
target.texture.id = 0;
target.texture.width = width;
target.texture.height = height;
target.texture.format = UNCOMPRESSED_R8G8B8A8;
target.texture.mipmaps = 1;
target.depth.id = 0;
target.depth.width = width;
target.depth.height = height;
target.depth.format = 19; //DEPTH_COMPONENT_24BIT
target.depth.mipmaps = 1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Create the texture that will serve as the color attachment for the framebuffer
glGenTextures(1, &target.texture.id);
glBindTexture(GL_TEXTURE_2D, target.texture.id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
#if defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_ES2)
#define USE_DEPTH_RENDERBUFFER
#else
#define USE_DEPTH_TEXTURE
#endif
#if defined(USE_DEPTH_RENDERBUFFER)
// Create the renderbuffer that will serve as the depth attachment for the framebuffer.
glGenRenderbuffers(1, &target.depth.id);
glBindRenderbuffer(GL_RENDERBUFFER, target.depth.id);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width, height); // GL_DEPTH_COMPONENT24 not supported on Android
#elif defined(USE_DEPTH_TEXTURE)
// NOTE: We can also use a texture for depth buffer (GL_ARB_depth_texture/GL_OES_depth_texture extension required)
// A renderbuffer is simpler than a texture and could offer better performance on embedded devices
glGenTextures(1, &target.depth.id);
glBindTexture(GL_TEXTURE_2D, target.depth.id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
// Create the framebuffer object
glGenFramebuffers(1, &target.id);
glBindFramebuffer(GL_FRAMEBUFFER, target.id);
// Attach color texture and depth renderbuffer to FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, target.texture.id, 0);
#if defined(USE_DEPTH_RENDERBUFFER)
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, target.depth.id);
#elif defined(USE_DEPTH_TEXTURE)
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, target.depth.id, 0);
#endif
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE)
{
TraceLog(LOG_WARNING, "Framebuffer object could not be created...");
switch (status)
{
case GL_FRAMEBUFFER_UNSUPPORTED: TraceLog(LOG_WARNING, "Framebuffer is unsupported"); break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: TraceLog(LOG_WARNING, "Framebuffer incomplete attachment"); break;
#if defined(GRAPHICS_API_OPENGL_ES2)
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: TraceLog(LOG_WARNING, "Framebuffer incomplete dimensions"); break;
#endif
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: TraceLog(LOG_WARNING, "Framebuffer incomplete missing attachment"); break;
default: break;
}
glDeleteTextures(1, &target.texture.id);
glDeleteTextures(1, &target.depth.id);
glDeleteFramebuffers(1, &target.id);
}
else TraceLog(LOG_INFO, "[FBO ID %i] Framebuffer object created successfully", target.id);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#endif
return target;
}
// Generate mipmap data for selected texture
void rlGenerateMipmaps(Texture2D *texture)
{
glBindTexture(GL_TEXTURE_2D, texture->id);
// Check if texture is power-of-two (POT)
bool texIsPOT = false;
if (((texture->width > 0) && ((texture->width & (texture->width - 1)) == 0)) &&
((texture->height > 0) && ((texture->height & (texture->height - 1)) == 0))) texIsPOT = true;
if ((texIsPOT) || (texNPOTSupported))
{
#if defined(GRAPHICS_API_OPENGL_11)
// WARNING: Manual mipmap generation only works for RGBA 32bit textures!
if (texture->format == UNCOMPRESSED_R8G8B8A8)
{
// Retrieve texture data from VRAM
void *data = rlReadTexturePixels(*texture);
// NOTE: data size is reallocated to fit mipmaps data
// NOTE: CPU mipmap generation only supports RGBA 32bit data
int mipmapCount = GenerateMipmaps(data, texture->width, texture->height);
int size = texture->width*texture->height*4;
int offset = size;
int mipWidth = texture->width/2;
int mipHeight = texture->height/2;
// Load the mipmaps
for (int level = 1; level < mipmapCount; level++)
{
glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data + offset);
size = mipWidth*mipHeight*4;
offset += size;
mipWidth /= 2;
mipHeight /= 2;
}
texture->mipmaps = mipmapCount + 1;
free(data); // Once mipmaps have been generated and data has been uploaded to GPU VRAM, we can discard RAM data
TraceLog(LOG_WARNING, "[TEX ID %i] Mipmaps [%i] generated manually on CPU side", texture->id, texture->mipmaps);
}
else TraceLog(LOG_WARNING, "[TEX ID %i] Mipmaps could not be generated for texture format", texture->id);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
//glHint(GL_GENERATE_MIPMAP_HINT, GL_DONT_CARE); // Hint for mipmaps generation algorythm: GL_FASTEST, GL_NICEST, GL_DONT_CARE
glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically
TraceLog(LOG_INFO, "[TEX ID %i] Mipmaps generated automatically", texture->id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
texture->mipmaps = 1 + (int)floor(log(MAX(texture->width, texture->height))/log(2));
#endif
}
else TraceLog(LOG_WARNING, "[TEX ID %i] Mipmaps can not be generated", texture->id);
glBindTexture(GL_TEXTURE_2D, 0);
}
// Upload vertex data into a VAO (if supported) and VBO
// TODO: Check if mesh has already been loaded in GPU
void rlLoadMesh(Mesh *mesh, bool dynamic)
{
mesh->vaoId = 0; // Vertex Array Object
mesh->vboId[0] = 0; // Vertex positions VBO
mesh->vboId[1] = 0; // Vertex texcoords VBO
mesh->vboId[2] = 0; // Vertex normals VBO
mesh->vboId[3] = 0; // Vertex colors VBO
mesh->vboId[4] = 0; // Vertex tangents VBO
mesh->vboId[5] = 0; // Vertex texcoords2 VBO
mesh->vboId[6] = 0; // Vertex indices VBO
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
int drawHint = GL_STATIC_DRAW;
if (dynamic) drawHint = GL_DYNAMIC_DRAW;
if (vaoSupported)
{
// Initialize Quads VAO (Buffer A)
glGenVertexArrays(1, &mesh->vaoId);
glBindVertexArray(mesh->vaoId);
}
// NOTE: Attributes must be uploaded considering default locations points
// Enable vertex attributes: position (shader-location = 0)
glGenBuffers(1, &mesh->vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->vertices, drawHint);
glVertexAttribPointer(0, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(0);
// Enable vertex attributes: texcoords (shader-location = 1)
glGenBuffers(1, &mesh->vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords, drawHint);
glVertexAttribPointer(1, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(1);
// Enable vertex attributes: normals (shader-location = 2)
if (mesh->normals != NULL)
{
glGenBuffers(1, &mesh->vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->normals, drawHint);
glVertexAttribPointer(2, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(2);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib3f(2, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(2);
}
// Default color vertex attribute (shader-location = 3)
if (mesh->colors != NULL)
{
glGenBuffers(1, &mesh->vboId[3]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[3]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*mesh->vertexCount, mesh->colors, drawHint);
glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(3);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(3);
}
// Default tangent vertex attribute (shader-location = 4)
if (mesh->tangents != NULL)
{
glGenBuffers(1, &mesh->vboId[4]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[4]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*mesh->vertexCount, mesh->tangents, drawHint);
glVertexAttribPointer(4, 4, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(4);
}
else
{
// Default tangents vertex attribute
glVertexAttrib4f(4, 0.0f, 0.0f, 0.0f, 0.0f);
glDisableVertexAttribArray(4);
}
// Default texcoord2 vertex attribute (shader-location = 5)
if (mesh->texcoords2 != NULL)
{
glGenBuffers(1, &mesh->vboId[5]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[5]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords2, drawHint);
glVertexAttribPointer(5, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(5);
}
else
{
// Default texcoord2 vertex attribute
glVertexAttrib2f(5, 0.0f, 0.0f);
glDisableVertexAttribArray(5);
}
if (mesh->indices != NULL)
{
glGenBuffers(1, &mesh->vboId[6]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh->vboId[6]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned short)*mesh->triangleCount*3, mesh->indices, GL_STATIC_DRAW);
}
if (vaoSupported)
{
if (mesh->vaoId > 0) TraceLog(LOG_INFO, "[VAO ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
else TraceLog(LOG_WARNING, "Mesh could not be uploaded to VRAM (GPU)");
}
else
{
TraceLog(LOG_INFO, "[VBOs] Mesh uploaded successfully to VRAM (GPU)");
}
#endif
}
// Update vertex data on GPU (upload new data to one buffer)
void rlUpdateMesh(Mesh mesh, int buffer, int numVertex)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Activate mesh VAO
if (vaoSupported) glBindVertexArray(mesh.vaoId);
switch (buffer)
{
case 0: // Update vertices (vertex position)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.vertices, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.vertices);
} break;
case 1: // Update texcoords (vertex texture coordinates)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*numVertex, mesh.texcoords, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*numVertex, mesh.texcoords);
} break;
case 2: // Update normals (vertex normals)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.normals, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.normals);
} break;
case 3: // Update colors (vertex colors)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[3]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*numVertex, mesh.colors, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*numVertex, mesh.colors);
} break;
case 4: // Update tangents (vertex tangents)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[4]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*numVertex, mesh.tangents, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*4*numVertex, mesh.tangents);
} break;
case 5: // Update texcoords2 (vertex second texture coordinates)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[5]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*numVertex, mesh.texcoords2, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*numVertex, mesh.texcoords2);
} break;
default: break;
}
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
// Another option would be using buffer mapping...
//mesh.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
}
// Draw a 3d mesh with material and transform
void rlDrawMesh(Mesh mesh, Material material, Matrix transform)
{
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, material.maps[MAP_DIFFUSE].texture.id);
// NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model
glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array
glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array
if (mesh.normals != NULL) glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array
if (mesh.colors != NULL) glEnableClientState(GL_COLOR_ARRAY); // Enable colors array
glVertexPointer(3, GL_FLOAT, 0, mesh.vertices); // Pointer to vertex coords array
glTexCoordPointer(2, GL_FLOAT, 0, mesh.texcoords); // Pointer to texture coords array
if (mesh.normals != NULL) glNormalPointer(GL_FLOAT, 0, mesh.normals); // Pointer to normals array
if (mesh.colors != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh.colors); // Pointer to colors array
rlPushMatrix();
rlMultMatrixf(MatrixToFloat(transform));
rlColor4ub(material.maps[MAP_DIFFUSE].color.r, material.maps[MAP_DIFFUSE].color.g, material.maps[MAP_DIFFUSE].color.b, material.maps[MAP_DIFFUSE].color.a);
if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, mesh.indices);
else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount);
rlPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array
if (mesh.normals != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array
if (mesh.colors != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable colors array
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Bind shader program
glUseProgram(material.shader.id);
// Matrices and other values required by shader
//-----------------------------------------------------
// Calculate and send to shader model matrix (used by PBR shader)
if (material.shader.locs[LOC_MATRIX_MODEL] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_MODEL], transform);
// Upload to shader material.colDiffuse
if (material.shader.locs[LOC_COLOR_DIFFUSE] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_DIFFUSE], (float)material.maps[MAP_DIFFUSE].color.r/255.0f,
(float)material.maps[MAP_DIFFUSE].color.g/255.0f,
(float)material.maps[MAP_DIFFUSE].color.b/255.0f,
(float)material.maps[MAP_DIFFUSE].color.a/255.0f);
// Upload to shader material.colSpecular (if available)
if (material.shader.locs[LOC_COLOR_SPECULAR] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_SPECULAR], (float)material.maps[MAP_SPECULAR].color.r/255.0f,
(float)material.maps[MAP_SPECULAR].color.g/255.0f,
(float)material.maps[MAP_SPECULAR].color.b/255.0f,
(float)material.maps[MAP_SPECULAR].color.a/255.0f);
if (material.shader.locs[LOC_MATRIX_VIEW] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_VIEW], modelview);
if (material.shader.locs[LOC_MATRIX_PROJECTION] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_PROJECTION], projection);
// At this point the modelview matrix just contains the view matrix (camera)
// That's because BeginMode3D() sets it an no model-drawing function modifies it, all use rlPushMatrix() and rlPopMatrix()
Matrix matView = modelview; // View matrix (camera)
Matrix matProjection = projection; // Projection matrix (perspective)
// Calculate model-view matrix combining matModel and matView
Matrix matModelView = MatrixMultiply(transform, matView); // Transform to camera-space coordinates
//-----------------------------------------------------
// Bind active texture maps (if available)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
glActiveTexture(GL_TEXTURE0 + i);
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, material.maps[i].texture.id);
else glBindTexture(GL_TEXTURE_2D, material.maps[i].texture.id);
glUniform1i(material.shader.locs[LOC_MAP_DIFFUSE + i], i);
}
}
// Bind vertex array objects (or VBOs)
if (vaoSupported) glBindVertexArray(mesh.vaoId);
else
{
// TODO: Simplify VBO binding into a for loop
// Bind mesh VBO data: vertex position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_POSITION]);
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD01]);
// Bind mesh VBO data: vertex normals (shader-location = 2, if available)
if (material.shader.locs[LOC_VERTEX_NORMAL] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_NORMAL], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_NORMAL]);
}
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
if (material.shader.locs[LOC_VERTEX_COLOR] != -1)
{
if (mesh.vboId[3] != 0)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[3]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]);
}
else
{
// Set default value for unused attribute
// NOTE: Required when using default shader and no VAO support
glVertexAttrib4f(material.shader.locs[LOC_VERTEX_COLOR], 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]);
}
}
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
if (material.shader.locs[LOC_VERTEX_TANGENT] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[4]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TANGENT], 4, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TANGENT]);
}
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
if (material.shader.locs[LOC_VERTEX_TEXCOORD02] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[5]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD02], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD02]);
}
if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.vboId[6]);
}
int eyesCount = 1;
#if defined(SUPPORT_VR_SIMULATOR)
if (vrStereoRender) eyesCount = 2;
#endif
for (int eye = 0; eye < eyesCount; eye++)
{
if (eyesCount == 1) modelview = matModelView;
#if defined(SUPPORT_VR_SIMULATOR)
else SetStereoView(eye, matProjection, matModelView);
#endif
// Calculate model-view-projection matrix (MVP)
Matrix matMVP = MatrixMultiply(modelview, projection); // Transform to screen-space coordinates
// Send combined model-view-projection matrix to shader
glUniformMatrix4fv(material.shader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP));
// Draw call!
if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, 0); // Indexed vertices draw
else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount);
}
// Unbind all binded texture maps
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Set shader active texture
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
else glBindTexture(GL_TEXTURE_2D, 0); // Unbind current active texture
}
// Unind vertex array objects (or VBOs)
if (vaoSupported) glBindVertexArray(0);
else
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
// Unbind shader program
glUseProgram(0);
// Restore projection/modelview matrices
// NOTE: In stereo rendering matrices are being modified to fit every eye
projection = matProjection;
modelview = matView;
#endif
}
// Unload mesh data from CPU and GPU
void rlUnloadMesh(Mesh *mesh)
{
if (mesh->vertices != NULL) free(mesh->vertices);
if (mesh->texcoords != NULL) free(mesh->texcoords);
if (mesh->normals != NULL) free(mesh->normals);
if (mesh->colors != NULL) free(mesh->colors);
if (mesh->tangents != NULL) free(mesh->tangents);
if (mesh->texcoords2 != NULL) free(mesh->texcoords2);
if (mesh->indices != NULL) free(mesh->indices);
rlDeleteBuffers(mesh->vboId[0]); // vertex
rlDeleteBuffers(mesh->vboId[1]); // texcoords
rlDeleteBuffers(mesh->vboId[2]); // normals
rlDeleteBuffers(mesh->vboId[3]); // colors
rlDeleteBuffers(mesh->vboId[4]); // tangents
rlDeleteBuffers(mesh->vboId[5]); // texcoords2
rlDeleteBuffers(mesh->vboId[6]); // indices
rlDeleteVertexArrays(mesh->vaoId);
}
// Read screen pixel data (color buffer)
unsigned char *rlReadScreenPixels(int width, int height)
{
unsigned char *screenData = (unsigned char *)calloc(width*height*4, sizeof(unsigned char));
// NOTE: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData);
// Flip image vertically!
unsigned char *imgData = (unsigned char *)malloc(width*height*sizeof(unsigned char)*4);
for (int y = height - 1; y >= 0; y--)
{
for (int x = 0; x < (width*4); x++)
{
// Flip line
imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x];
// Set alpha component value to 255 (no trasparent image retrieval)
// NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it!
if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255;
}
}
free(screenData);
return imgData; // NOTE: image data should be freed
}
// Read texture pixel data
// NOTE: glGetTexImage() is not available on OpenGL ES 2.0
// Texture2D width and height are required on OpenGL ES 2.0. There is no way to get it from texture id.
void *rlReadTexturePixels(Texture2D texture)
{
void *pixels = NULL;
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
glBindTexture(GL_TEXTURE_2D, texture.id);
// NOTE: Using texture.id, we can retrieve some texture info (but not on OpenGL ES 2.0)
/*
int width, height, format;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format);
// Other texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE
*/
// NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding.
// Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting.
// GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.)
// GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.)
glPixelStorei(GL_PACK_ALIGNMENT, 1);
int glInternalFormat, glFormat, glType;
GetGlFormats(texture.format, &glInternalFormat, &glFormat, &glType);
unsigned int size = GetPixelDataSize(texture.width, texture.height, texture.format);
if ((glInternalFormat != -1) && (texture.format < COMPRESSED_DXT1_RGB))
{
pixels = (unsigned char *)malloc(size);
glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels);
}
else TraceLog(LOG_WARNING, "Texture data retrieval not suported for pixel format");
glBindTexture(GL_TEXTURE_2D, 0);
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
RenderTexture2D fbo = rlLoadRenderTexture(texture.width, texture.height);
// NOTE: Two possible Options:
// 1 - Bind texture to color fbo attachment and glReadPixels()
// 2 - Create an fbo, activate it, render quad with texture, glReadPixels()
#define GET_TEXTURE_FBO_OPTION_1 // It works
#if defined(GET_TEXTURE_FBO_OPTION_1)
glBindFramebuffer(GL_FRAMEBUFFER, fbo.id);
glBindTexture(GL_TEXTURE_2D, 0);
// Attach our texture to FBO -> Texture must be RGBA
// NOTE: Previoust attached texture is automatically detached
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.id, 0);
pixels = (unsigned char *)malloc(texture.width*texture.height*4*sizeof(unsigned char));
// NOTE: We read data as RGBA because FBO texture is configured as RGBA, despite binding a RGB texture...
glReadPixels(0, 0, texture.width, texture.height, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
// Re-attach internal FBO color texture before deleting it
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fbo.texture.id, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#elif defined(GET_TEXTURE_FBO_OPTION_2)
// Render texture to fbo
glBindFramebuffer(GL_FRAMEBUFFER, fbo.id);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClearDepthf(1.0f);
//glDisable(GL_TEXTURE_2D);
glEnable(GL_DEPTH_TEST);
//glDisable(GL_BLEND);
glViewport(0, 0, texture.width, texture.height);
rlOrtho(0.0, texture.width, texture.height, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUseProgram(GetShaderDefault().id);
glBindTexture(GL_TEXTURE_2D, texture.id);
GenDrawQuad();
glBindTexture(GL_TEXTURE_2D, 0);
glUseProgram(0);
pixels = (unsigned char *)malloc(texture.width*texture.height*4*sizeof(unsigned char));
glReadPixels(0, 0, texture.width, texture.height, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
// Bind framebuffer 0, which means render to back buffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Reset viewport dimensions to default
glViewport(0, 0, screenWidth, screenHeight);
#endif // GET_TEXTURE_FBO_OPTION
// Clean up temporal fbo
rlDeleteRenderTextures(fbo);
#endif
return pixels;
}
/*
// TODO: Record draw calls to be processed in batch
// NOTE: Global state must be kept
void rlRecordDraw(void)
{
// TODO: Before adding a new draw, check if anything changed from last stored draw
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
draws[drawsCounter].vaoId = currentState.vaoId; // lines.id, trangles.id, quads.id?
draws[drawsCounter].textureId = currentState.textureId; // whiteTexture?
draws[drawsCounter].shaderId = currentState.shaderId; // defaultShader.id
draws[drawsCounter].projection = projection;
draws[drawsCounter].modelview = modelview;
draws[drawsCounter].vertexCount = currentState.vertexCount;
drawsCounter++;
#endif
}
*/
//----------------------------------------------------------------------------------
// Module Functions Definition - Shaders Functions
// NOTE: Those functions are exposed directly to the user in raylib.h
//----------------------------------------------------------------------------------
// Get default internal texture (white texture)
Texture2D GetTextureDefault(void)
{
Texture2D texture;
texture.id = whiteTexture;
texture.width = 1;
texture.height = 1;
texture.mipmaps = 1;
texture.format = UNCOMPRESSED_R8G8B8A8;
return texture;
}
// Get default shader
Shader GetShaderDefault(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
return defaultShader;
#else
Shader shader = { 0 };
return shader;
#endif
}
// Load text data from file
// NOTE: text chars array should be freed manually
char *LoadText(const char *fileName)
{
FILE *textFile;
char *text = NULL;
int count = 0;
if (fileName != NULL)
{
textFile = fopen(fileName,"rt");
if (textFile != NULL)
{
fseek(textFile, 0, SEEK_END);
count = ftell(textFile);
rewind(textFile);
if (count > 0)
{
text = (char *)malloc(sizeof(char)*(count + 1));
count = fread(text, sizeof(char), count, textFile);
text[count] = '\0';
}
fclose(textFile);
}
else TraceLog(LOG_WARNING, "[%s] Text file could not be opened", fileName);
}
return text;
}
// Load shader from files and bind default locations
// NOTE: If shader string is NULL, using default vertex/fragment shaders
Shader LoadShader(const char *vsFileName, const char *fsFileName)
{
Shader shader = { 0 };
char *vShaderStr = NULL;
char *fShaderStr = NULL;
if (vsFileName != NULL) vShaderStr = LoadText(vsFileName);
if (fsFileName != NULL) fShaderStr = LoadText(fsFileName);
shader = LoadShaderCode(vShaderStr, fShaderStr);
if (vShaderStr != NULL) free(vShaderStr);
if (fShaderStr != NULL) free(fShaderStr);
return shader;
}
// Load shader from code strings
// NOTE: If shader string is NULL, using default vertex/fragment shaders
Shader LoadShaderCode(char *vsCode, char *fsCode)
{
Shader shader = { 0 };
// NOTE: All locations must be reseted to -1 (no location)
for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
unsigned int vertexShaderId = defaultVShaderId;
unsigned int fragmentShaderId = defaultFShaderId;
if (vsCode != NULL) vertexShaderId = CompileShader(vsCode, GL_VERTEX_SHADER);
if (fsCode != NULL) fragmentShaderId = CompileShader(fsCode, GL_FRAGMENT_SHADER);
if ((vertexShaderId == defaultVShaderId) && (fragmentShaderId == defaultFShaderId)) shader = defaultShader;
else
{
shader.id = LoadShaderProgram(vertexShaderId, fragmentShaderId);
if (vertexShaderId != defaultVShaderId) glDeleteShader(vertexShaderId);
if (fragmentShaderId != defaultFShaderId) glDeleteShader(fragmentShaderId);
if (shader.id == 0)
{
TraceLog(LOG_WARNING, "Custom shader could not be loaded");
shader = defaultShader;
}
// After shader loading, we TRY to set default location names
if (shader.id > 0) SetShaderDefaultLocations(&shader);
}
// Get available shader uniforms
// NOTE: This information is useful for debug...
int uniformCount = -1;
glGetProgramiv(shader.id, GL_ACTIVE_UNIFORMS, &uniformCount);
for(int i = 0; i < uniformCount; i++)
{
int namelen = -1;
int num = -1;
char name[256]; // Assume no variable names longer than 256
GLenum type = GL_ZERO;
// Get the name of the uniforms
glGetActiveUniform(shader.id, i,sizeof(name) - 1, &namelen, &num, &type, name);
name[namelen] = 0;
// Get the location of the named uniform
GLuint location = glGetUniformLocation(shader.id, name);
TraceLog(LOG_DEBUG, "[SHDR ID %i] Active uniform [%s] set at location: %i", shader.id, name, location);
}
#endif
return shader;
}
// Unload shader from GPU memory (VRAM)
void UnloadShader(Shader shader)
{
if (shader.id > 0)
{
rlDeleteShader(shader.id);
TraceLog(LOG_INFO, "[SHDR ID %i] Unloaded shader program data", shader.id);
}
}
// Begin custom shader mode
void BeginShaderMode(Shader shader)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (currentShader.id != shader.id)
{
rlglDraw();
currentShader = shader;
}
#endif
}
// End custom shader mode (returns to default shader)
void EndShaderMode(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
BeginShaderMode(defaultShader);
#endif
}
// Get shader uniform location
int GetShaderLocation(Shader shader, const char *uniformName)
{
int location = -1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
location = glGetUniformLocation(shader.id, uniformName);
if (location == -1) TraceLog(LOG_WARNING, "[SHDR ID %i] Shader uniform [%s] COULD NOT BE FOUND", shader.id, uniformName);
else TraceLog(LOG_INFO, "[SHDR ID %i] Shader uniform [%s] set at location: %i", shader.id, uniformName, location);
#endif
return location;
}
// Set shader uniform value (float)
void SetShaderValue(Shader shader, int uniformLoc, const float *value, int size)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(shader.id);
if (size == 1) glUniform1fv(uniformLoc, 1, value); // Shader uniform type: float
else if (size == 2) glUniform2fv(uniformLoc, 1, value); // Shader uniform type: vec2
else if (size == 3) glUniform3fv(uniformLoc, 1, value); // Shader uniform type: vec3
else if (size == 4) glUniform4fv(uniformLoc, 1, value); // Shader uniform type: vec4
else TraceLog(LOG_WARNING, "Shader value float array size not supported");
//glUseProgram(0); // Avoid reseting current shader program, in case other uniforms are set
#endif
}
// Set shader uniform value (int)
void SetShaderValuei(Shader shader, int uniformLoc, const int *value, int size)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(shader.id);
if (size == 1) glUniform1iv(uniformLoc, 1, value); // Shader uniform type: int
else if (size == 2) glUniform2iv(uniformLoc, 1, value); // Shader uniform type: ivec2
else if (size == 3) glUniform3iv(uniformLoc, 1, value); // Shader uniform type: ivec3
else if (size == 4) glUniform4iv(uniformLoc, 1, value); // Shader uniform type: ivec4
else TraceLog(LOG_WARNING, "Shader value int array size not supported");
//glUseProgram(0);
#endif
}
// Set shader uniform value (matrix 4x4)
void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(shader.id);
glUniformMatrix4fv(uniformLoc, 1, false, MatrixToFloat(mat));
//glUseProgram(0);
#endif
}
// Set a custom projection matrix (replaces internal projection matrix)
void SetMatrixProjection(Matrix proj)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
projection = proj;
#endif
}
// Set a custom modelview matrix (replaces internal modelview matrix)
void SetMatrixModelview(Matrix view)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
modelview = view;
#endif
}
// Return internal modelview matrix
Matrix GetMatrixModelview()
{
Matrix matrix = MatrixIdentity();
#if defined(GRAPHICS_API_OPENGL_11)
float mat[16];
glGetFloatv(GL_MODELVIEW_MATRIX, mat);
#else
matrix = modelview;
#endif
return matrix;
}
// Generate cubemap texture from HDR texture
// TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24
Texture2D GenTextureCubemap(Shader shader, Texture2D skyHDR, int size)
{
Texture2D cubemap = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) // || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: SetShaderDefaultLocations() already setups locations for projection and view Matrix in shader
// Other locations should be setup externally in shader before calling the function
// Set up depth face culling and cubemap seamless
glDisable(GL_CULL_FACE);
#if defined(GRAPHICS_API_OPENGL_33)
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // Flag not supported on OpenGL ES 2.0
#endif
// Setup framebuffer
unsigned int fbo, rbo;
glGenFramebuffers(1, &fbo);
glGenRenderbuffers(1, &rbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo);
// Set up cubemap to render and attach to framebuffer
// NOTE: faces are stored with 16 bit floating point values
glGenTextures(1, &cubemap.id);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap.id);
for (unsigned int i = 0; i < 6; i++)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, size, size, 0, GL_RGB, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
#if defined(GRAPHICS_API_OPENGL_33)
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); // Flag not supported on OpenGL ES 2.0
#endif
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Create projection (transposed) and different views for each face
Matrix fboProjection = MatrixPerspective(90.0*DEG2RAD, 1.0, 0.01, 1000.0);
//MatrixTranspose(&fboProjection);
Matrix fboViews[6] = {
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ -1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f })
};
// Convert HDR equirectangular environment map to cubemap equivalent
glUseProgram(shader.id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, skyHDR.id);
SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_PROJECTION], fboProjection);
// Note: don't forget to configure the viewport to the capture dimensions
glViewport(0, 0, size, size);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
for (unsigned int i = 0; i < 6; i++)
{
SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_VIEW], fboViews[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, cubemap.id, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GenDrawCube();
}
// Unbind framebuffer and textures
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Reset viewport dimensions to default
glViewport(0, 0, screenWidth, screenHeight);
//glEnable(GL_CULL_FACE);
cubemap.width = size;
cubemap.height = size;
#endif
return cubemap;
}
// Generate irradiance texture using cubemap data
// TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24
Texture2D GenTextureIrradiance(Shader shader, Texture2D cubemap, int size)
{
Texture2D irradiance = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) // || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: SetShaderDefaultLocations() already setups locations for projection and view Matrix in shader
// Other locations should be setup externally in shader before calling the function
// Setup framebuffer
unsigned int fbo, rbo;
glGenFramebuffers(1, &fbo);
glGenRenderbuffers(1, &rbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo);
// Create an irradiance cubemap, and re-scale capture FBO to irradiance scale
glGenTextures(1, &irradiance.id);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradiance.id);
for (unsigned int i = 0; i < 6; i++)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, size, size, 0, GL_RGB, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Create projection (transposed) and different views for each face
Matrix fboProjection = MatrixPerspective(90.0*DEG2RAD, 1.0, 0.01, 1000.0);
//MatrixTranspose(&fboProjection);
Matrix fboViews[6] = {
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ -1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f })
};
// Solve diffuse integral by convolution to create an irradiance cubemap
glUseProgram(shader.id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap.id);
SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_PROJECTION], fboProjection);
// Note: don't forget to configure the viewport to the capture dimensions
glViewport(0, 0, size, size);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
for (unsigned int i = 0; i < 6; i++)
{
SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_VIEW], fboViews[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradiance.id, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GenDrawCube();
}
// Unbind framebuffer and textures
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Reset viewport dimensions to default
glViewport(0, 0, screenWidth, screenHeight);
irradiance.width = size;
irradiance.height = size;
#endif
return irradiance;
}
// Generate prefilter texture using cubemap data
// TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24
Texture2D GenTexturePrefilter(Shader shader, Texture2D cubemap, int size)
{
Texture2D prefilter = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) // || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: SetShaderDefaultLocations() already setups locations for projection and view Matrix in shader
// Other locations should be setup externally in shader before calling the function
// TODO: Locations should be taken out of this function... too shader dependant...
int roughnessLoc = GetShaderLocation(shader, "roughness");
// Setup framebuffer
unsigned int fbo, rbo;
glGenFramebuffers(1, &fbo);
glGenRenderbuffers(1, &rbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo);
// Create a prefiltered HDR environment map
glGenTextures(1, &prefilter.id);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilter.id);
for (unsigned int i = 0; i < 6; i++)
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, size, size, 0, GL_RGB, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Generate mipmaps for the prefiltered HDR texture
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// Create projection (transposed) and different views for each face
Matrix fboProjection = MatrixPerspective(90.0*DEG2RAD, 1.0, 0.01, 1000.0);
//MatrixTranspose(&fboProjection);
Matrix fboViews[6] = {
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ -1.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, 1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f }),
MatrixLookAt((Vector3){ 0.0f, 0.0f, 0.0f }, (Vector3){ 0.0f, 0.0f, -1.0f }, (Vector3){ 0.0f, -1.0f, 0.0f })
};
// Prefilter HDR and store data into mipmap levels
glUseProgram(shader.id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap.id);
SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_PROJECTION], fboProjection);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
#define MAX_MIPMAP_LEVELS 5 // Max number of prefilter texture mipmaps
for (unsigned int mip = 0; mip < MAX_MIPMAP_LEVELS; mip++)
{
// Resize framebuffer according to mip-level size.
unsigned int mipWidth = size*powf(0.5f, mip);
unsigned int mipHeight = size*powf(0.5f, mip);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
glViewport(0, 0, mipWidth, mipHeight);
float roughness = (float)mip/(float)(MAX_MIPMAP_LEVELS - 1);
glUniform1f(roughnessLoc, roughness);
for (unsigned int i = 0; i < 6; ++i)
{
SetShaderValueMatrix(shader, shader.locs[LOC_MATRIX_VIEW], fboViews[i]);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilter.id, mip);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GenDrawCube();
}
}
// Unbind framebuffer and textures
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Reset viewport dimensions to default
glViewport(0, 0, screenWidth, screenHeight);
prefilter.width = size;
prefilter.height = size;
#endif
return prefilter;
}
// Generate BRDF texture using cubemap data
// TODO: OpenGL ES 2.0 does not support GL_RGB16F texture format, neither GL_DEPTH_COMPONENT24
Texture2D GenTextureBRDF(Shader shader, Texture2D cubemap, int size)
{
Texture2D brdf = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) // || defined(GRAPHICS_API_OPENGL_ES2)
// Generate BRDF convolution texture
glGenTextures(1, &brdf.id);
glBindTexture(GL_TEXTURE_2D, brdf.id);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, size, size, 0, GL_RG, GL_FLOAT, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Render BRDF LUT into a quad using FBO
unsigned int fbo, rbo;
glGenFramebuffers(1, &fbo);
glGenRenderbuffers(1, &rbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glBindRenderbuffer(GL_RENDERBUFFER, rbo);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, size, size);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdf.id, 0);
glViewport(0, 0, size, size);
glUseProgram(shader.id);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GenDrawQuad();
// Unbind framebuffer and textures
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Reset viewport dimensions to default
glViewport(0, 0, screenWidth, screenHeight);
brdf.width = size;
brdf.height = size;
#endif
return brdf;
}
// Begin blending mode (alpha, additive, multiplied)
// NOTE: Only 3 blending modes supported, default blend mode is alpha
void BeginBlendMode(int mode)
{
if ((blendMode != mode) && (mode < 3))
{
rlglDraw();
switch (mode)
{
case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break;
case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); break; // Alternative: glBlendFunc(GL_ONE, GL_ONE);
case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); break;
default: break;
}
blendMode = mode;
}
}
// End blending mode (reset to default: alpha blending)
void EndBlendMode(void)
{
BeginBlendMode(BLEND_ALPHA);
}
#if defined(SUPPORT_VR_SIMULATOR)
// Get VR device information for some standard devices
VrDeviceInfo GetVrDeviceInfo(int vrDeviceType)
{
VrDeviceInfo hmd = { 0 }; // Current VR device info
switch (vrDeviceType)
{
case HMD_DEFAULT_DEVICE:
case HMD_OCULUS_RIFT_CV1:
{
// Oculus Rift CV1 parameters
// NOTE: CV1 represents a complete HMD redesign compared to previous versions,
// new Fresnel-hybrid-asymmetric lenses have been added and, consequently,
// previous parameters (DK2) and distortion shader (DK2) doesn't work any more.
// I just defined a set of parameters for simulator that approximate to CV1 stereo rendering
// but result is not the same obtained with Oculus PC SDK.
hmd.hResolution = 2160; // HMD horizontal resolution in pixels
hmd.vResolution = 1200; // HMD vertical resolution in pixels
hmd.hScreenSize = 0.133793f; // HMD horizontal size in meters
hmd.vScreenSize = 0.0669f; // HMD vertical size in meters
hmd.vScreenCenter = 0.04678f; // HMD screen center in meters
hmd.eyeToScreenDistance = 0.041f; // HMD distance between eye and display in meters
hmd.lensSeparationDistance = 0.07f; // HMD lens separation distance in meters
hmd.interpupillaryDistance = 0.07f; // HMD IPD (distance between pupils) in meters
hmd.lensDistortionValues[0] = 1.0f; // HMD lens distortion constant parameter 0
hmd.lensDistortionValues[1] = 0.22f; // HMD lens distortion constant parameter 1
hmd.lensDistortionValues[2] = 0.24f; // HMD lens distortion constant parameter 2
hmd.lensDistortionValues[3] = 0.0f; // HMD lens distortion constant parameter 3
hmd.chromaAbCorrection[0] = 0.996f; // HMD chromatic aberration correction parameter 0
hmd.chromaAbCorrection[1] = -0.004f; // HMD chromatic aberration correction parameter 1
hmd.chromaAbCorrection[2] = 1.014f; // HMD chromatic aberration correction parameter 2
hmd.chromaAbCorrection[3] = 0.0f; // HMD chromatic aberration correction parameter 3
TraceLog(LOG_INFO, "Initializing VR Simulator (Oculus Rift CV1)");
} break;
case HMD_OCULUS_RIFT_DK2:
{
// Oculus Rift DK2 parameters
hmd.hResolution = 1280; // HMD horizontal resolution in pixels
hmd.vResolution = 800; // HMD vertical resolution in pixels
hmd.hScreenSize = 0.14976f; // HMD horizontal size in meters
hmd.vScreenSize = 0.09356f; // HMD vertical size in meters
hmd.vScreenCenter = 0.04678f; // HMD screen center in meters
hmd.eyeToScreenDistance = 0.041f; // HMD distance between eye and display in meters
hmd.lensSeparationDistance = 0.0635f; // HMD lens separation distance in meters
hmd.interpupillaryDistance = 0.064f; // HMD IPD (distance between pupils) in meters
hmd.lensDistortionValues[0] = 1.0f; // HMD lens distortion constant parameter 0
hmd.lensDistortionValues[1] = 0.22f; // HMD lens distortion constant parameter 1
hmd.lensDistortionValues[2] = 0.24f; // HMD lens distortion constant parameter 2
hmd.lensDistortionValues[3] = 0.0f; // HMD lens distortion constant parameter 3
hmd.chromaAbCorrection[0] = 0.996f; // HMD chromatic aberration correction parameter 0
hmd.chromaAbCorrection[1] = -0.004f; // HMD chromatic aberration correction parameter 1
hmd.chromaAbCorrection[2] = 1.014f; // HMD chromatic aberration correction parameter 2
hmd.chromaAbCorrection[3] = 0.0f; // HMD chromatic aberration correction parameter 3
TraceLog(LOG_INFO, "Initializing VR Simulator (Oculus Rift DK2)");
} break;
case HMD_OCULUS_GO:
{
// TODO: Provide device display and lens parameters
}
case HMD_VALVE_HTC_VIVE:
{
// TODO: Provide device display and lens parameters
}
case HMD_SONY_PSVR:
{
// TODO: Provide device display and lens parameters
}
default: break;
}
return hmd;
}
// Init VR simulator for selected device parameters
// NOTE: It modifies the global variable: VrStereoConfig vrConfig
void InitVrSimulator(VrDeviceInfo info)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize framebuffer and textures for stereo rendering
// NOTE: Screen size should match HMD aspect ratio
vrConfig.stereoFbo = rlLoadRenderTexture(screenWidth, screenHeight);
#if defined(SUPPORT_DISTORTION_SHADER)
// Load distortion shader
unsigned int vertexShaderId = CompileShader(distortionVShaderStr, GL_VERTEX_SHADER);
unsigned int fragmentShaderId = CompileShader(distortionFShaderStr, GL_FRAGMENT_SHADER);
vrConfig.distortionShader.id = LoadShaderProgram(vertexShaderId, fragmentShaderId);
if (vrConfig.distortionShader.id > 0) SetShaderDefaultLocations(&vrConfig.distortionShader);
#endif
// Set VR configutarion parameters, including distortion shader
SetStereoConfig(info);
vrSimulatorReady = true;
#endif
#if defined(GRAPHICS_API_OPENGL_11)
TraceLog(LOG_WARNING, "VR Simulator not supported on OpenGL 1.1");
#endif
}
// Close VR simulator for current device
void CloseVrSimulator(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (vrSimulatorReady)
{
rlDeleteRenderTextures(vrConfig.stereoFbo); // Unload stereo framebuffer and texture
#if defined(SUPPORT_DISTORTION_SHADER)
UnloadShader(vrConfig.distortionShader); // Unload distortion shader
#endif
}
#endif
}
// Detect if VR simulator is running
bool IsVrSimulatorReady(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
return vrSimulatorReady;
#else
return false;
#endif
}
// Set VR distortion shader for stereoscopic rendering
// TODO: Review VR system to be more flexible, move distortion shader to user side
void SetVrDistortionShader(Shader shader)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
vrConfig.distortionShader = shader;
//SetStereoConfig(info); // TODO: Must be reviewed to set new distortion shader uniform values...
#endif
}
// Enable/Disable VR experience (device or simulator)
void ToggleVrMode(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
vrSimulatorReady = !vrSimulatorReady;
if (!vrSimulatorReady)
{
vrStereoRender = false;
// Reset viewport and default projection-modelview matrices
rlViewport(0, 0, screenWidth, screenHeight);
projection = MatrixOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0);
modelview = MatrixIdentity();
}
else vrStereoRender = true;
#endif
}
// Update VR tracking (position and orientation) and camera
// NOTE: Camera (position, target, up) gets update with head tracking information
void UpdateVrTracking(Camera *camera)
{
// TODO: Simulate 1st person camera system
}
// Begin Oculus drawing configuration
void BeginVrDrawing(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (vrSimulatorReady)
{
// Setup framebuffer for stereo rendering
rlEnableRenderTexture(vrConfig.stereoFbo.id);
// NOTE: If your application is configured to treat the texture as a linear format (e.g. GL_RGBA)
// and performs linear-to-gamma conversion in GLSL or does not care about gamma-correction, then:
// - Require OculusBuffer format to be OVR_FORMAT_R8G8B8A8_UNORM_SRGB
// - Do NOT enable GL_FRAMEBUFFER_SRGB
//glEnable(GL_FRAMEBUFFER_SRGB);
//glViewport(0, 0, buffer.width, buffer.height); // Useful if rendering to separate framebuffers (every eye)
rlClearScreenBuffers(); // Clear current framebuffer(s)
vrStereoRender = true;
}
#endif
}
// End Oculus drawing process (and desktop mirror)
void EndVrDrawing(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (vrSimulatorReady)
{
vrStereoRender = false; // Disable stereo render
rlDisableRenderTexture(); // Unbind current framebuffer
rlClearScreenBuffers(); // Clear current framebuffer
// Set viewport to default framebuffer size (screen size)
rlViewport(0, 0, screenWidth, screenHeight);
// Let rlgl reconfigure internal matrices
rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix
rlLoadIdentity(); // Reset internal projection matrix
rlOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0); // Recalculate internal projection matrix
rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix
rlLoadIdentity(); // Reset internal modelview matrix
#if defined(SUPPORT_DISTORTION_SHADER)
// Draw RenderTexture (stereoFbo) using distortion shader
currentShader = vrConfig.distortionShader;
#else
currentShader = GetShaderDefault();
#endif
rlEnableTexture(vrConfig.stereoFbo.texture.id);
rlPushMatrix();
rlBegin(RL_QUADS);
rlColor4ub(255, 255, 255, 255);
rlNormal3f(0.0f, 0.0f, 1.0f);
// Bottom-left corner for texture and quad
rlTexCoord2f(0.0f, 1.0f);
rlVertex2f(0.0f, 0.0f);
// Bottom-right corner for texture and quad
rlTexCoord2f(0.0f, 0.0f);
rlVertex2f(0.0f, vrConfig.stereoFbo.texture.height);
// Top-right corner for texture and quad
rlTexCoord2f(1.0f, 0.0f);
rlVertex2f(vrConfig.stereoFbo.texture.width, vrConfig.stereoFbo.texture.height);
// Top-left corner for texture and quad
rlTexCoord2f(1.0f, 1.0f);
rlVertex2f(vrConfig.stereoFbo.texture.width, 0.0f);
rlEnd();
rlPopMatrix();
rlDisableTexture();
// Update and draw render texture fbo with distortion to backbuffer
UpdateBuffersDefault();
DrawBuffersDefault();
// Restore defaultShader
currentShader = defaultShader;
// Reset viewport and default projection-modelview matrices
rlViewport(0, 0, screenWidth, screenHeight);
projection = MatrixOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0);
modelview = MatrixIdentity();
rlDisableDepthTest();
}
#endif
}
#endif // SUPPORT_VR_SIMULATOR
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Compile custom shader and return shader id
static unsigned int CompileShader(const char *shaderStr, int type)
{
unsigned int shader = glCreateShader(type);
glShaderSource(shader, 1, &shaderStr, NULL);
GLint success = 0;
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (success != GL_TRUE)
{
TraceLog(LOG_WARNING, "[SHDR ID %i] Failed to compile shader...", shader);
int maxLength = 0;
int length;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
#if defined(_MSC_VER)
char *log = malloc(maxLength);
#else
char log[maxLength];
#endif
glGetShaderInfoLog(shader, maxLength, &length, log);
TraceLog(LOG_INFO, "%s", log);
#if defined(_MSC_VER)
free(log);
#endif
}
else TraceLog(LOG_INFO, "[SHDR ID %i] Shader compiled successfully", shader);
return shader;
}
// Load custom shader strings and return program id
static unsigned int LoadShaderProgram(unsigned int vShaderId, unsigned int fShaderId)
{
unsigned int program = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLint success = 0;
program = glCreateProgram();
glAttachShader(program, vShaderId);
glAttachShader(program, fShaderId);
// NOTE: Default attribute shader locations must be binded before linking
glBindAttribLocation(program, 0, DEFAULT_ATTRIB_POSITION_NAME);
glBindAttribLocation(program, 1, DEFAULT_ATTRIB_TEXCOORD_NAME);
glBindAttribLocation(program, 2, DEFAULT_ATTRIB_NORMAL_NAME);
glBindAttribLocation(program, 3, DEFAULT_ATTRIB_COLOR_NAME);
glBindAttribLocation(program, 4, DEFAULT_ATTRIB_TANGENT_NAME);
glBindAttribLocation(program, 5, DEFAULT_ATTRIB_TEXCOORD2_NAME);
// NOTE: If some attrib name is no found on the shader, it locations becomes -1
glLinkProgram(program);
// NOTE: All uniform variables are intitialised to 0 when a program links
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (success == GL_FALSE)
{
TraceLog(LOG_WARNING, "[SHDR ID %i] Failed to link shader program...", program);
int maxLength = 0;
int length;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);
#ifdef _MSC_VER
char *log = malloc(maxLength);
#else
char log[maxLength];
#endif
glGetProgramInfoLog(program, maxLength, &length, log);
TraceLog(LOG_INFO, "%s", log);
#ifdef _MSC_VER
free(log);
#endif
glDeleteProgram(program);
program = 0;
}
else TraceLog(LOG_INFO, "[SHDR ID %i] Shader program loaded successfully", program);
#endif
return program;
}
// Load default shader (just vertex positioning and texture coloring)
// NOTE: This shader program is used for batch buffers (lines, triangles, quads)
static Shader LoadShaderDefault(void)
{
Shader shader = { 0 };
// NOTE: All locations must be reseted to -1 (no location)
for (int i = 0; i < MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1;
// Vertex shader directly defined, no external file required
char defaultVShaderStr[] =
#if defined(GRAPHICS_API_OPENGL_21)
"#version 120 \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
"#version 100 \n"
#endif
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
"attribute vec3 vertexPosition; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec4 vertexColor; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_33)
"#version 330 \n"
"in vec3 vertexPosition; \n"
"in vec2 vertexTexCoord; \n"
"in vec4 vertexColor; \n"
"out vec2 fragTexCoord; \n"
"out vec4 fragColor; \n"
#endif
"uniform mat4 mvp; \n"
"void main() \n"
"{ \n"
" fragTexCoord = vertexTexCoord; \n"
" fragColor = vertexColor; \n"
" gl_Position = mvp*vec4(vertexPosition, 1.0); \n"
"} \n";
// Fragment shader directly defined, no external file required
char defaultFShaderStr[] =
#if defined(GRAPHICS_API_OPENGL_21)
"#version 120 \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
"#version 100 \n"
"precision mediump float; \n" // precision required for OpenGL ES2 (WebGL)
#endif
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_33)
"#version 330 \n"
"in vec2 fragTexCoord; \n"
"in vec4 fragColor; \n"
"out vec4 finalColor; \n"
#endif
"uniform sampler2D texture0; \n"
"uniform vec4 colDiffuse; \n"
"void main() \n"
"{ \n"
#if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21)
" vec4 texelColor = texture2D(texture0, fragTexCoord); \n" // NOTE: texture2D() is deprecated on OpenGL 3.3 and ES 3.0
" gl_FragColor = texelColor*colDiffuse*fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_33)
" vec4 texelColor = texture(texture0, fragTexCoord); \n"
" finalColor = texelColor*colDiffuse*fragColor; \n"
#endif
"} \n";
// NOTE: Compiled vertex/fragment shaders are kept for re-use
defaultVShaderId = CompileShader(defaultVShaderStr, GL_VERTEX_SHADER); // Compile default vertex shader
defaultFShaderId = CompileShader(defaultFShaderStr, GL_FRAGMENT_SHADER); // Compile default fragment shader
shader.id = LoadShaderProgram(defaultVShaderId, defaultFShaderId);
if (shader.id > 0)
{
TraceLog(LOG_INFO, "[SHDR ID %i] Default shader loaded successfully", shader.id);
// Set default shader locations: attributes locations
shader.locs[LOC_VERTEX_POSITION] = glGetAttribLocation(shader.id, "vertexPosition");
shader.locs[LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(shader.id, "vertexTexCoord");
shader.locs[LOC_VERTEX_COLOR] = glGetAttribLocation(shader.id, "vertexColor");
// Set default shader locations: uniform locations
shader.locs[LOC_MATRIX_MVP] = glGetUniformLocation(shader.id, "mvp");
shader.locs[LOC_COLOR_DIFFUSE] = glGetUniformLocation(shader.id, "colDiffuse");
shader.locs[LOC_MAP_DIFFUSE] = glGetUniformLocation(shader.id, "texture0");
// NOTE: We could also use below function but in case DEFAULT_ATTRIB_* points are
// changed for external custom shaders, we just use direct bindings above
//SetShaderDefaultLocations(&shader);
}
else TraceLog(LOG_WARNING, "[SHDR ID %i] Default shader could not be loaded", shader.id);
return shader;
}
// Get location handlers to for shader attributes and uniforms
// NOTE: If any location is not found, loc point becomes -1
static void SetShaderDefaultLocations(Shader *shader)
{
// NOTE: Default shader attrib locations have been fixed before linking:
// vertex position location = 0
// vertex texcoord location = 1
// vertex normal location = 2
// vertex color location = 3
// vertex tangent location = 4
// vertex texcoord2 location = 5
// Get handles to GLSL input attibute locations
shader->locs[LOC_VERTEX_POSITION] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_POSITION_NAME);
shader->locs[LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD_NAME);
shader->locs[LOC_VERTEX_TEXCOORD02] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD2_NAME);
shader->locs[LOC_VERTEX_NORMAL] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_NORMAL_NAME);
shader->locs[LOC_VERTEX_TANGENT] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TANGENT_NAME);
shader->locs[LOC_VERTEX_COLOR] = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_COLOR_NAME);
// Get handles to GLSL uniform locations (vertex shader)
shader->locs[LOC_MATRIX_MVP] = glGetUniformLocation(shader->id, "mvp");
shader->locs[LOC_MATRIX_PROJECTION] = glGetUniformLocation(shader->id, "projection");
shader->locs[LOC_MATRIX_VIEW] = glGetUniformLocation(shader->id, "view");
// Get handles to GLSL uniform locations (fragment shader)
shader->locs[LOC_COLOR_DIFFUSE] = glGetUniformLocation(shader->id, "colDiffuse");
shader->locs[LOC_MAP_DIFFUSE] = glGetUniformLocation(shader->id, "texture0");
shader->locs[LOC_MAP_SPECULAR] = glGetUniformLocation(shader->id, "texture1");
shader->locs[LOC_MAP_NORMAL] = glGetUniformLocation(shader->id, "texture2");
}
// Unload default shader
static void UnloadShaderDefault(void)
{
glUseProgram(0);
glDetachShader(defaultShader.id, defaultVShaderId);
glDetachShader(defaultShader.id, defaultFShaderId);
glDeleteShader(defaultVShaderId);
glDeleteShader(defaultFShaderId);
glDeleteProgram(defaultShader.id);
}
// Load default internal buffers (lines, triangles, quads)
static void LoadBuffersDefault(void)
{
// [CPU] Allocate and initialize float array buffers to store vertex data (lines, triangles, quads)
//--------------------------------------------------------------------------------------------
// Lines - Initialize arrays (vertex position and color data)
lines.vertices = (float *)malloc(sizeof(float)*3*2*MAX_LINES_BATCH); // 3 float by vertex, 2 vertex by line
lines.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*2*MAX_LINES_BATCH); // 4 float by color, 2 colors by line
lines.texcoords = NULL;
lines.indices = NULL;
for (int i = 0; i < (3*2*MAX_LINES_BATCH); i++) lines.vertices[i] = 0.0f;
for (int i = 0; i < (4*2*MAX_LINES_BATCH); i++) lines.colors[i] = 0;
lines.vCounter = 0;
lines.cCounter = 0;
lines.tcCounter = 0;
// Triangles - Initialize arrays (vertex position and color data)
triangles.vertices = (float *)malloc(sizeof(float)*3*3*MAX_TRIANGLES_BATCH); // 3 float by vertex, 3 vertex by triangle
triangles.texcoords = (float *)malloc(sizeof(float)*2*3*MAX_TRIANGLES_BATCH);
triangles.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH); // 4 float by color, 3 colors by triangle
triangles.indices = NULL;
for (int i = 0; i < (3*3*MAX_TRIANGLES_BATCH); i++) triangles.vertices[i] = 0.0f;
for (int i = 0; i < (2*3*MAX_TRIANGLES_BATCH); i++) triangles.texcoords[i] = 0.0f;
for (int i = 0; i < (4*3*MAX_TRIANGLES_BATCH); i++) triangles.colors[i] = 0;
triangles.vCounter = 0;
triangles.cCounter = 0;
triangles.tcCounter = 0;
// Quads - Initialize arrays (vertex position, texcoord, color data and indexes)
quads.vertices = (float *)malloc(sizeof(float)*3*4*MAX_QUADS_BATCH); // 3 float by vertex, 4 vertex by quad
quads.texcoords = (float *)malloc(sizeof(float)*2*4*MAX_QUADS_BATCH); // 2 float by texcoord, 4 texcoord by quad
quads.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*4*MAX_QUADS_BATCH); // 4 float by color, 4 colors by quad
#if defined(GRAPHICS_API_OPENGL_33)
quads.indices = (unsigned int *)malloc(sizeof(unsigned int)*6*MAX_QUADS_BATCH); // 6 int by quad (indices)
#elif defined(GRAPHICS_API_OPENGL_ES2)
quads.indices = (unsigned short *)malloc(sizeof(unsigned short)*6*MAX_QUADS_BATCH); // 6 int by quad (indices)
#endif
for (int i = 0; i < (3*4*MAX_QUADS_BATCH); i++) quads.vertices[i] = 0.0f;
for (int i = 0; i < (2*4*MAX_QUADS_BATCH); i++) quads.texcoords[i] = 0.0f;
for (int i = 0; i < (4*4*MAX_QUADS_BATCH); i++) quads.colors[i] = 0;
int k = 0;
// Indices can be initialized right now
for (int i = 0; i < (6*MAX_QUADS_BATCH); i+=6)
{
quads.indices[i] = 4*k;
quads.indices[i+1] = 4*k+1;
quads.indices[i+2] = 4*k+2;
quads.indices[i+3] = 4*k;
quads.indices[i+4] = 4*k+2;
quads.indices[i+5] = 4*k+3;
k++;
}
quads.vCounter = 0;
quads.tcCounter = 0;
quads.cCounter = 0;
TraceLog(LOG_INFO, "[CPU] Default buffers initialized successfully (lines, triangles, quads)");
//--------------------------------------------------------------------------------------------
// [GPU] Upload vertex data and initialize VAOs/VBOs (lines, triangles, quads)
// NOTE: Default buffers are linked to use currentShader (defaultShader)
//--------------------------------------------------------------------------------------------
// Upload and link lines vertex buffers
if (vaoSupported)
{
// Initialize Lines VAO
glGenVertexArrays(1, &lines.vaoId);
glBindVertexArray(lines.vaoId);
}
// Lines - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(2, &lines.vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_POSITION]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(2, &lines.vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_COLOR]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
if (vaoSupported) TraceLog(LOG_INFO, "[VAO ID %i] Default buffers VAO initialized successfully (lines)", lines.vaoId);
else TraceLog(LOG_INFO, "[VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (lines)", lines.vboId[0], lines.vboId[1]);
// Upload and link triangles vertex buffers
if (vaoSupported)
{
// Initialize Triangles VAO
glGenVertexArrays(1, &triangles.vaoId);
glBindVertexArray(triangles.vaoId);
}
// Triangles - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(1, &triangles.vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_POSITION]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glGenBuffers(1, &triangles.vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*3*MAX_TRIANGLES_BATCH, triangles.texcoords, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_TEXCOORD01]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(1, &triangles.vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_COLOR]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
if (vaoSupported) TraceLog(LOG_INFO, "[VAO ID %i] Default buffers VAO initialized successfully (triangles)", triangles.vaoId);
else TraceLog(LOG_INFO, "[VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (triangles)", triangles.vboId[0], triangles.vboId[1]);
// Upload and link quads vertex buffers
if (vaoSupported)
{
// Initialize Quads VAO
glGenVertexArrays(1, &quads.vaoId);
glBindVertexArray(quads.vaoId);
}
// Quads - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(1, &quads.vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_POSITION]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
// Vertex texcoord buffer (shader-location = 1)
glGenBuffers(1, &quads.vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_TEXCOORD01]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(1, &quads.vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_COLOR]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
// Fill index buffer
glGenBuffers(1, &quads.vboId[3]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]);
#if defined(GRAPHICS_API_OPENGL_33)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW);
#elif defined(GRAPHICS_API_OPENGL_ES2)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW);
#endif
if (vaoSupported) TraceLog(LOG_INFO, "[VAO ID %i] Default buffers VAO initialized successfully (quads)", quads.vaoId);
else TraceLog(LOG_INFO, "[VBO ID %i][VBO ID %i][VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (quads)", quads.vboId[0], quads.vboId[1], quads.vboId[2], quads.vboId[3]);
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
//--------------------------------------------------------------------------------------------
}
// Update default internal buffers (VAOs/VBOs) with vertex array data
// NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0)
// TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (change flag required)
static void UpdateBuffersDefault(void)
{
// Update lines vertex buffers
if (lines.vCounter > 0)
{
// Activate Lines VAO
if (vaoSupported) glBindVertexArray(lines.vaoId);
// Lines - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*lines.vCounter, lines.vertices); // target - offset (in bytes) - size (in bytes) - data pointer
// Lines - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*lines.cCounter, lines.colors);
}
// Update triangles vertex buffers
if (triangles.vCounter > 0)
{
// Activate Triangles VAO
if (vaoSupported) glBindVertexArray(triangles.vaoId);
// Triangles - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*triangles.vCounter, triangles.vertices);
// Quads - texture coordinates buffer
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*3*MAX_TRIANGLES_BATCH, triangles.texcoords, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*triangles.vCounter, triangles.texcoords);
// Triangles - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[2]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*triangles.cCounter, triangles.colors);
}
// Update quads vertex buffers
if (quads.vCounter > 0)
{
// Activate Quads VAO
if (vaoSupported) glBindVertexArray(quads.vaoId);
// Quads - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*quads.vCounter, quads.vertices);
// Quads - texture coordinates buffer
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*quads.vCounter, quads.texcoords);
// Quads - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*quads.vCounter, quads.colors);
// Another option would be using buffer mapping...
//quads.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
}
//--------------------------------------------------------------
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
}
// Draw default internal buffers vertex data
// NOTE: We draw in this order: lines, triangles, quads
static void DrawBuffersDefault(void)
{
Matrix matProjection = projection;
Matrix matModelView = modelview;
int eyesCount = 1;
#if defined(SUPPORT_VR_SIMULATOR)
if (vrStereoRender) eyesCount = 2;
#endif
for (int eye = 0; eye < eyesCount; eye++)
{
#if defined(SUPPORT_VR_SIMULATOR)
if (eyesCount == 2) SetStereoView(eye, matProjection, matModelView);
#endif
// Set current shader and upload current MVP matrix
if ((lines.vCounter > 0) || (triangles.vCounter > 0) || (quads.vCounter > 0))
{
glUseProgram(currentShader.id);
// Create modelview-projection matrix
Matrix matMVP = MatrixMultiply(modelview, projection);
glUniformMatrix4fv(currentShader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP));
glUniform4f(currentShader.locs[LOC_COLOR_DIFFUSE], 1.0f, 1.0f, 1.0f, 1.0f);
glUniform1i(currentShader.locs[LOC_MAP_DIFFUSE], 0);
// NOTE: Additional map textures not considered for default buffers drawing
}
// Draw lines buffers
if (lines.vCounter > 0)
{
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, whiteTexture);
if (vaoSupported)
{
glBindVertexArray(lines.vaoId);
}
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_POSITION]);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_COLOR]);
}
glDrawArrays(GL_LINES, 0, lines.vCounter);
if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
}
// Draw triangles buffers
if (triangles.vCounter > 0)
{
if (vaoSupported)
{
glBindVertexArray(triangles.vaoId);
}
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_POSITION]);
// Bind vertex attrib: texcoord (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_TEXCOORD01]);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[2]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_COLOR]);
}
glActiveTexture(GL_TEXTURE0);
int count = 0;
for (int i = 0; i < drawsCounter; i++) {
glBindTexture(GL_TEXTURE_2D, draws[i].textureId);
glDrawArrays(GL_TRIANGLES, count, draws[i].vertexCount);
count += draws[i].vertexCount;
}
glBindTexture(GL_TEXTURE_2D, 0);
if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0);
// glBindTexture(GL_TEXTURE_2D, 0);
}
// Draw quads buffers
if (quads.vCounter > 0)
{
int quadsCount = 0;
int numIndicesToProcess = 0;
int indicesOffset = 0;
if (vaoSupported)
{
glBindVertexArray(quads.vaoId);
}
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_POSITION]);
// Bind vertex attrib: texcoord (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_TEXCOORD01]);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]);
glVertexAttribPointer(currentShader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(currentShader.locs[LOC_VERTEX_COLOR]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]);
}
//TraceLog(LOG_DEBUG, "Draws required per frame: %i", drawsCounter);
for (int i = 0; i < drawsCounter; i++)
{
quadsCount = draws[i].vertexCount/4;
numIndicesToProcess = quadsCount*6; // Get number of Quads*6 index by Quad
//TraceLog(LOG_DEBUG, "Quads to render: %i - Vertex Count: %i", quadsCount, draws[i].vertexCount);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, draws[i].textureId);
// NOTE: The final parameter tells the GPU the offset in bytes from the start of the index buffer to the location of the first index to process
#if defined(GRAPHICS_API_OPENGL_33)
glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_INT, (GLvoid *)(sizeof(GLuint)*indicesOffset));
#elif defined(GRAPHICS_API_OPENGL_ES2)
glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_SHORT, (GLvoid *)(sizeof(GLushort)*indicesOffset));
#endif
//GLenum err;
//if ((err = glGetError()) != GL_NO_ERROR) TraceLog(LOG_INFO, "OpenGL error: %i", (int)err); //GL_INVALID_ENUM!
indicesOffset += draws[i].vertexCount/4*6;
}
if (!vaoSupported)
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures
}
if (vaoSupported) glBindVertexArray(0); // Unbind VAO
glUseProgram(0); // Unbind shader program
}
// Reset draws counter
drawsCounter = 1;
draws[0].textureId = whiteTexture;
draws[0].vertexCount = 0;
// Reset vertex counters for next frame
lines.vCounter = 0;
lines.cCounter = 0;
triangles.vCounter = 0;
triangles.tcCounter = 0;
triangles.cCounter = 0;
quads.vCounter = 0;
quads.tcCounter = 0;
quads.cCounter = 0;
// Reset depth for next draw
currentDepth = -1.0f;
// Restore projection/modelview matrices
projection = matProjection;
modelview = matModelView;
}
// Unload default internal buffers vertex data from CPU and GPU
static void UnloadBuffersDefault(void)
{
// Unbind everything
if (vaoSupported) glBindVertexArray(0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
glDisableVertexAttribArray(3);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Delete VBOs from GPU (VRAM)
glDeleteBuffers(1, &lines.vboId[0]);
glDeleteBuffers(1, &lines.vboId[1]);
glDeleteBuffers(1, &triangles.vboId[0]);
glDeleteBuffers(1, &triangles.vboId[1]);
glDeleteBuffers(1, &triangles.vboId[2]);
glDeleteBuffers(1, &quads.vboId[0]);
glDeleteBuffers(1, &quads.vboId[1]);
glDeleteBuffers(1, &quads.vboId[2]);
glDeleteBuffers(1, &quads.vboId[3]);
if (vaoSupported)
{
// Delete VAOs from GPU (VRAM)
glDeleteVertexArrays(1, &lines.vaoId);
glDeleteVertexArrays(1, &triangles.vaoId);
glDeleteVertexArrays(1, &quads.vaoId);
}
// Free vertex arrays memory from CPU (RAM)
free(lines.vertices);
free(lines.colors);
free(triangles.vertices);
free(triangles.texcoords);
free(triangles.colors);
free(quads.vertices);
free(quads.texcoords);
free(quads.colors);
free(quads.indices);
}
// Renders a 1x1 XY quad in NDC
static void GenDrawQuad(void)
{
unsigned int quadVAO = 0;
unsigned int quadVBO = 0;
float vertices[] = {
// Positions // Texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// Set up plane VAO
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), &vertices, GL_STATIC_DRAW);
// Link vertex attributes
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)(3*sizeof(float)));
// Draw quad
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
glDeleteBuffers(1, &quadVBO);
glDeleteVertexArrays(1, &quadVAO);
}
// Renders a 1x1 3D cube in NDC
static void GenDrawCube(void)
{
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
float vertices[] = {
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f
};
// Set up cube VAO
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(6*sizeof(float)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
// Draw cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
glDeleteBuffers(1, &cubeVBO);
glDeleteVertexArrays(1, &cubeVAO);
}
#if defined(SUPPORT_VR_SIMULATOR)
// Configure stereo rendering (including distortion shader) with HMD device parameters
// NOTE: It modifies the global variable: VrStereoConfig vrConfig
static void SetStereoConfig(VrDeviceInfo hmd)
{
// Compute aspect ratio
float aspect = ((float)hmd.hResolution*0.5f)/(float)hmd.vResolution;
// Compute lens parameters
float lensShift = (hmd.hScreenSize*0.25f - hmd.lensSeparationDistance*0.5f)/hmd.hScreenSize;
float leftLensCenter[2] = { 0.25f + lensShift, 0.5f };
float rightLensCenter[2] = { 0.75f - lensShift, 0.5f };
float leftScreenCenter[2] = { 0.25f, 0.5f };
float rightScreenCenter[2] = { 0.75f, 0.5f };
// Compute distortion scale parameters
// NOTE: To get lens max radius, lensShift must be normalized to [-1..1]
float lensRadius = fabs(-1.0f - 4.0f*lensShift);
float lensRadiusSq = lensRadius*lensRadius;
float distortionScale = hmd.lensDistortionValues[0] +
hmd.lensDistortionValues[1]*lensRadiusSq +
hmd.lensDistortionValues[2]*lensRadiusSq*lensRadiusSq +
hmd.lensDistortionValues[3]*lensRadiusSq*lensRadiusSq*lensRadiusSq;
TraceLog(LOG_DEBUG, "VR: Distortion Scale: %f", distortionScale);
float normScreenWidth = 0.5f;
float normScreenHeight = 1.0f;
float scaleIn[2] = { 2.0f/normScreenWidth, 2.0f/normScreenHeight/aspect };
float scale[2] = { normScreenWidth*0.5f/distortionScale, normScreenHeight*0.5f*aspect/distortionScale };
TraceLog(LOG_DEBUG, "VR: Distortion Shader: LeftLensCenter = { %f, %f }", leftLensCenter[0], leftLensCenter[1]);
TraceLog(LOG_DEBUG, "VR: Distortion Shader: RightLensCenter = { %f, %f }", rightLensCenter[0], rightLensCenter[1]);
TraceLog(LOG_DEBUG, "VR: Distortion Shader: Scale = { %f, %f }", scale[0], scale[1]);
TraceLog(LOG_DEBUG, "VR: Distortion Shader: ScaleIn = { %f, %f }", scaleIn[0], scaleIn[1]);
#if defined(SUPPORT_DISTORTION_SHADER)
// Update distortion shader with lens and distortion-scale parameters
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "leftLensCenter"), leftLensCenter, 2);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "rightLensCenter"), rightLensCenter, 2);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "leftScreenCenter"), leftScreenCenter, 2);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "rightScreenCenter"), rightScreenCenter, 2);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "scale"), scale, 2);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "scaleIn"), scaleIn, 2);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "hmdWarpParam"), hmd.lensDistortionValues, 4);
SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "chromaAbParam"), hmd.chromaAbCorrection, 4);
#endif
// Fovy is normally computed with: 2*atan2(hmd.vScreenSize, 2*hmd.eyeToScreenDistance)
// ...but with lens distortion it is increased (see Oculus SDK Documentation)
//float fovy = 2.0f*atan2(hmd.vScreenSize*0.5f*distortionScale, hmd.eyeToScreenDistance); // Really need distortionScale?
float fovy = 2.0f*(float)atan2(hmd.vScreenSize*0.5f, hmd.eyeToScreenDistance);
// Compute camera projection matrices
float projOffset = 4.0f*lensShift; // Scaled to projection space coordinates [-1..1]
Matrix proj = MatrixPerspective(fovy, aspect, 0.01, 1000.0);
vrConfig.eyesProjection[0] = MatrixMultiply(proj, MatrixTranslate(projOffset, 0.0f, 0.0f));
vrConfig.eyesProjection[1] = MatrixMultiply(proj, MatrixTranslate(-projOffset, 0.0f, 0.0f));
// Compute camera transformation matrices
// NOTE: Camera movement might seem more natural if we model the head.
// Our axis of rotation is the base of our head, so we might want to add
// some y (base of head to eye level) and -z (center of head to eye protrusion) to the camera positions.
vrConfig.eyesViewOffset[0] = MatrixTranslate(-hmd.interpupillaryDistance*0.5f, 0.075f, 0.045f);
vrConfig.eyesViewOffset[1] = MatrixTranslate(hmd.interpupillaryDistance*0.5f, 0.075f, 0.045f);
// Compute eyes Viewports
vrConfig.eyesViewport[0] = (Rectangle){ 0, 0, hmd.hResolution/2, hmd.vResolution };
vrConfig.eyesViewport[1] = (Rectangle){ hmd.hResolution/2, 0, hmd.hResolution/2, hmd.vResolution };
}
// Set internal projection and modelview matrix depending on eyes tracking data
static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView)
{
Matrix eyeProjection = matProjection;
Matrix eyeModelView = matModelView;
// Setup viewport and projection/modelview matrices using tracking data
rlViewport(eye*screenWidth/2, 0, screenWidth/2, screenHeight);
// Apply view offset to modelview matrix
eyeModelView = MatrixMultiply(matModelView, vrConfig.eyesViewOffset[eye]);
// Set current eye projection matrix
eyeProjection = vrConfig.eyesProjection[eye];
SetMatrixModelview(eyeModelView);
SetMatrixProjection(eyeProjection);
}
#endif // defined(SUPPORT_VR_SIMULATOR)
#endif //defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Get OpenGL internal formats and data type from raylib PixelFormat
static void GetGlFormats(int format, int *glInternalFormat, int *glFormat, int *glType)
{
*glInternalFormat = -1;
*glFormat = -1;
*glType = -1;
switch (format)
{
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA
case UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_LUMINANCE_ALPHA; *glFormat = GL_LUMINANCE_ALPHA; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break;
case UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break;
case UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break;
case UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break;
#if !defined(GRAPHICS_API_OPENGL_11)
case UNCOMPRESSED_R32: if (texFloatSupported) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float
case UNCOMPRESSED_R32G32B32: if (texFloatSupported) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float
case UNCOMPRESSED_R32G32B32A32: if (texFloatSupported) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float
#endif
#elif defined(GRAPHICS_API_OPENGL_33)
case UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_R8; *glFormat = GL_RED; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_RG8; *glFormat = GL_RG; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB565; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break;
case UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB8; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGB5_A1; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break;
case UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA4; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break;
case UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA8; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_R32: if (texFloatSupported) *glInternalFormat = GL_R32F; *glFormat = GL_RED; *glType = GL_FLOAT; break;
case UNCOMPRESSED_R32G32B32: if (texFloatSupported) *glInternalFormat = GL_RGB32F; *glFormat = GL_RGB; *glType = GL_FLOAT; break;
case UNCOMPRESSED_R32G32B32A32: if (texFloatSupported) *glInternalFormat = GL_RGBA32F; *glFormat = GL_RGBA; *glType = GL_FLOAT; break;
#endif
#if !defined(GRAPHICS_API_OPENGL_11)
case COMPRESSED_DXT1_RGB: if (texCompDXTSupported) *glInternalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break;
case COMPRESSED_DXT1_RGBA: if (texCompDXTSupported) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break;
case COMPRESSED_DXT3_RGBA: if (texCompDXTSupported) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break;
case COMPRESSED_DXT5_RGBA: if (texCompDXTSupported) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break;
case COMPRESSED_ETC1_RGB: if (texCompETC1Supported) *glInternalFormat = GL_ETC1_RGB8_OES; break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3
case COMPRESSED_ETC2_RGB: if (texCompETC2Supported) *glInternalFormat = GL_COMPRESSED_RGB8_ETC2; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case COMPRESSED_ETC2_EAC_RGBA: if (texCompETC2Supported) *glInternalFormat = GL_COMPRESSED_RGBA8_ETC2_EAC; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case COMPRESSED_PVRT_RGB: if (texCompPVRTSupported) *glInternalFormat = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU
case COMPRESSED_PVRT_RGBA: if (texCompPVRTSupported) *glInternalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU
case COMPRESSED_ASTC_4x4_RGBA: if (texCompASTCSupported) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_4x4_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
case COMPRESSED_ASTC_8x8_RGBA: if (texCompASTCSupported) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_8x8_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
#endif
default: TraceLog(LOG_WARNING, "Texture format not supported"); break;
}
}
#if defined(GRAPHICS_API_OPENGL_11)
// Mipmaps data is generated after image data
// NOTE: Only works with RGBA (4 bytes) data!
static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight)
{
int mipmapCount = 1; // Required mipmap levels count (including base level)
int width = baseWidth;
int height = baseHeight;
int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...), RGBA only
// Count mipmap levels required
while ((width != 1) && (height != 1))
{
if (width != 1) width /= 2;
if (height != 1) height /= 2;
TraceLog(LOG_DEBUG, "Next mipmap size: %i x %i", width, height);
mipmapCount++;
size += (width*height*4); // Add mipmap size (in bytes)
}
TraceLog(LOG_DEBUG, "Total mipmaps required: %i", mipmapCount);
TraceLog(LOG_DEBUG, "Total size of data required: %i", size);
unsigned char *temp = realloc(data, size);
if (temp != NULL) data = temp;
else TraceLog(LOG_WARNING, "Mipmaps required memory could not be allocated");
width = baseWidth;
height = baseHeight;
size = (width*height*4);
// Generate mipmaps
// NOTE: Every mipmap data is stored after data
Color *image = (Color *)malloc(width*height*sizeof(Color));
Color *mipmap = NULL;
int offset = 0;
int j = 0;
for (int i = 0; i < size; i += 4)
{
image[j].r = data[i];
image[j].g = data[i + 1];
image[j].b = data[i + 2];
image[j].a = data[i + 3];
j++;
}
TraceLog(LOG_DEBUG, "Mipmap base (%ix%i)", width, height);
for (int mip = 1; mip < mipmapCount; mip++)
{
mipmap = GenNextMipmap(image, width, height);
offset += (width*height*4); // Size of last mipmap
j = 0;
width /= 2;
height /= 2;
size = (width*height*4); // Mipmap size to store after offset
// Add mipmap to data
for (int i = 0; i < size; i += 4)
{
data[offset + i] = mipmap[j].r;
data[offset + i + 1] = mipmap[j].g;
data[offset + i + 2] = mipmap[j].b;
data[offset + i + 3] = mipmap[j].a;
j++;
}
free(image);
image = mipmap;
mipmap = NULL;
}
free(mipmap); // free mipmap data
return mipmapCount;
}
// Manual mipmap generation (basic scaling algorithm)
static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight)
{
int x2, y2;
Color prow, pcol;
int width = srcWidth/2;
int height = srcHeight/2;
Color *mipmap = (Color *)malloc(width*height*sizeof(Color));
// Scaling algorithm works perfectly (box-filter)
for (int y = 0; y < height; y++)
{
y2 = 2*y;
for (int x = 0; x < width; x++)
{
x2 = 2*x;
prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2;
prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2;
prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2;
prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2;
pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2;
pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2;
pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2;
pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2;
mipmap[y*width + x].r = (prow.r + pcol.r)/2;
mipmap[y*width + x].g = (prow.g + pcol.g)/2;
mipmap[y*width + x].b = (prow.b + pcol.b)/2;
mipmap[y*width + x].a = (prow.a + pcol.a)/2;
}
}
TraceLog(LOG_DEBUG, "Mipmap generated successfully (%ix%i)", width, height);
return mipmap;
}
#endif
#if defined(RLGL_STANDALONE)
// Show trace log messages (LOG_INFO, LOG_WARNING, LOG_ERROR, LOG_DEBUG)
void TraceLog(int msgType, const char *text, ...)
{
va_list args;
va_start(args, text);
switch (msgType)
{
case LOG_INFO: fprintf(stdout, "INFO: "); break;
case LOG_ERROR: fprintf(stdout, "ERROR: "); break;
case LOG_WARNING: fprintf(stdout, "WARNING: "); break;
case LOG_DEBUG: fprintf(stdout, "DEBUG: "); break;
default: break;
}
vfprintf(stdout, text, args);
fprintf(stdout, "\n");
va_end(args);
if (msgType == LOG_ERROR) exit(1);
}
#endif
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment