Skip to content

Instantly share code, notes, and snippets.

Avatar
🎯
Creating Things & Solving Problems

Rodrigo Leite drigols

🎯
Creating Things & Solving Problems
View GitHub Profile
@drigols
drigols / .md
Last active January 18, 2023 10:50
The Checklist (Good practices for good programmers)
View .md

The Checklist (Good practices for good programmers)

  • Software Engineering:
    • Data Science/A.I Project management:
      • Data Science projects types (+steps)
      • CRoss Industry Standard Process for Data Mining (CRISP-DM)
      • Data Pipeline
  • Software Development & Engineering:
    • Algorithms:
      • Design and Analysis of Algorithms
View k-fold-v2.py
def ApplyesKFold(x_axis, y_axis):
# Linear Models.
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
# Cross-Validation models.
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
View k-fold.py
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import cross_val_score # Cross Validation Function.
from sklearn.model_selection import KFold # KFold Class.
from sklearn.linear_model import LinearRegression # Linear Regression class.
df = pd.read_csv("../datasets/Admission_Predict.csv")
df.drop('Serial No.', axis = 1, inplace = True)
View preprocessing-v1.py
import pandas as pd
pd.set_option('display.max_columns', 42)
data = pd.read_csv('../datasets/2015-building-energy-benchmarking.csv')
# Exibe a média de cada coluna.
print((data.isnull().sum() / len(data['OSEBuildingID'])) * 100, '\n')
data['ENERGYSTARScore'] = data['ENERGYSTARScore'].fillna(data['ENERGYSTARScore'].median())
View fillna_mean_median.py
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
data['Height'] = data['Height'].fillna(data['Height'].mean())
data['Weight'] = data['Weight'].fillna(data['Weight'].mean())
print(data[['Height', 'Weight']].head(20))
View fillna-v1.py
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
data['Medal'] = data['Medal'].fillna('Nenhuma')
print(data['Medal'].head(10))
View percent_missing.py
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
percentMissing = (data.isnull().sum() / len(data['ID'])) * 100
print(percentMissing)
View isnull_sum.py
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
isNullSum = data.isnull().sum()
print(isNullSum)
View isnull.py
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
isnull = data.isnull()
print(isnull)
View shape.py
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
dt = data.dropna()
print("Full sample: {0}".format(data.shape))
print("Sample without NaN: {0}".format(dt.shape))