Created
October 22, 2020 21:37
-
-
Save drozzy/a4fb9bab9303bb63784f158facb5a974 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using DifferentialEquations, Flux, Optim, DiffEqFlux, DiffEqSensitivity, Plots | |
using Plots | |
function reaction1!(du, u, p, t) | |
# Reaction: A + 2B → C | |
a, b, c = u | |
k, = p | |
rate = k * a*b^2 | |
du[1] = da = -rate | |
du[2] = db = -2*rate | |
du[3] = dc = rate | |
end | |
u0 = [2.0, 2.4, 1.0] | |
t_start = 0.0 | |
t_end = 10.0 | |
t_span = (t_start, t_end) | |
t_samples = range(t_start, t_end, length=5) | |
t_plot = range(t_start, t_end, length=100) | |
p = [1.1] | |
prob = ODEProblem(reaction1!, u0, t_span, p) | |
sol = solve(prob, Tsit5()) | |
data = reduce(hcat, [sol(t) for t in t_samples]) | |
function make_plot() | |
dp = [sol(t) for t in t_plot] | |
dp = reduce(hcat, dp) | |
a,b,c = dp[1,:], dp[2, :], dp[3, :] | |
plt = plot(t_plot, [a,b,c], linestyle=:dash, label=["True A" "True B" "True C"], legend = :outertopright) | |
ds = [sol(t) for t in t_samples] | |
ds = reduce(hcat, ds) | |
a,b,c = ds[1,:], ds[2, :], ds[3, :] | |
plt = scatter!(plt, t_samples, [a,b,c], color=:gray, label=["Sampled A" "Sampled B" "Sampled C"]) | |
plot!(xlims = (-1 + t_start, t_end+1), ylims = (0.0, 3)) | |
end | |
function make_plot(prediction::Array) | |
a,b,c = prediction[1,:], prediction[2, :], prediction[3, :] | |
scatter!(make_plot(), t_samples, [a,b,c], label=["Pred A" "Pred B" "Pred C"]) | |
end | |
function make_plot(prediction::DiffEqBase.AbstractODESolution) | |
times = t_plot | |
predictions = [prediction(t) for t in times] | |
a = [predictions[i][1] for i in 1:size(predictions, 1)] | |
b = [predictions[i][2] for i in 1:size(predictions, 1)] | |
c = [predictions[i][3] for i in 1:size(predictions, 1)] | |
plot!(make_plot(), times, [a,b,c], label=["Pred A" "Pred B" "Pred C"]) | |
end | |
make_plot() | |
############ TRAIN ################ | |
dRdt = FastChain((x, p) -> x, | |
FastDense(3, 50, tanh), | |
FastDense(50, 3)) | |
neuralode = NeuralODE(dRdt, t_span, saveat = t_samples) | |
function loss(p) | |
prediction = Array(neuralode(u0, p)) | |
print(typeof(prediction)) | |
l = sum(abs2, data .- prediction) | |
return l, prediction | |
end | |
loss(neuralode.p) | |
callback = function (p, l, prediction; doplot = true) | |
display(l) | |
if doplot | |
plt = make_plot(prediction) | |
display(plot(plt)) | |
end | |
return false | |
end | |
result = DiffEqFlux.sciml_train(loss, neuralode.p, | |
ADAM(0.01), | |
cb = callback, | |
maxiters = 250) | |
pred = neuralode(u0) | |
predictions = [pred(t) for t in t_plot] | |
a = [predictions[i][1] for i in 1:size(predictions, 1)] | |
b = [predictions[i][2] for i in 1:size(predictions, 1)] | |
c = [predictions[i][3] for i in 1:size(predictions, 1)] | |
plot!(t_plot, [a,b,c], label=["Pred A2" "Pred B2" "Pred C2"]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment