Last active
September 2, 2016 15:01
-
-
Save dstein64/c08c57707962b3033dc56b441bcd28e3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def matrix_factorization_quux( | |
D, P, Q, steps=5000, alpha=0.0002, beta=0.02): | |
K = P.shape[1] | |
P = np.copy(P) | |
Q = np.copy(Q) | |
for step in xrange(steps): | |
for i in xrange(len(D)): | |
for j in xrange(len(D[i])): | |
if not getmask(D)[i, j]: | |
eij = D[i, j] - np.dot(P[i, :], Q[:, j]) | |
for k in xrange(K): | |
P[i, k] = P[i, k] + alpha * (2 * eij * Q[k, j] - beta * P[i, k]) | |
Q[k, j] = Q[k, j] + alpha * (2 * eij * P[i, k] - beta * Q[k, j]) | |
return P, Q | |
if __name__ == '__main__': | |
D = np.array([[5, 3, -1, 1], | |
[4, -1, -1, 1], | |
[1, 1, -1, 5], | |
[1, -1, -1, 4], | |
[-1, 1, 5, 5]]) | |
D = ma.masked_array(D, mask=D==-1) | |
m, n = D.shape | |
K = 2 | |
P = np.random.rand(m, K) | |
Q = np.random.rand(K, n) | |
np.set_printoptions(formatter={'all': lambda x: str(x).rjust(2)}) | |
print 'Ratings Matrix\n', D, '\n' | |
np.set_printoptions(precision = 2, formatter=None) | |
P_theano_bgd, Q_theano_bgd = matrix_factorization_bgd(D, P, Q) | |
print 'Theano Batch Gradient Descent\n',\ | |
np.dot(P_theano_bgd, Q_theano_bgd), '\n' | |
P_theano_sgd, Q_theano_sgd = matrix_factorization_sgd(D, P, Q) | |
print 'Theano Stochastic Gradient Descent\n',\ | |
np.dot(P_theano_sgd, Q_theano_sgd), '\n' | |
P_quux, Q_quux = matrix_factorization_quux(D, P, Q) | |
print 'quuxlabs\n', np.dot(P_quux, Q_quux), '\n' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment