Last active
September 2, 2016 15:16
-
-
Save dstein64/c541c5c79a4731cb6ee66acbd8423f50 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def matrix_factorization_sgd( | |
D, P, Q, steps=5000, alpha=0.0002, beta=0.02): | |
P = theano.shared(P.astype(floatX)) | |
Q = theano.shared(Q.astype(floatX)) | |
P_i = T.vector() | |
Q_j = T.vector() | |
i = T.iscalar() | |
j = T.iscalar() | |
x = T.scalar() | |
error = T.sqr(P_i.dot(Q_j) - x) | |
regularization = (beta/2.0) * (P_i.dot(P_i) + Q_j.dot(Q_j)) | |
cost = error + regularization | |
gp, gq = T.grad(cost=cost, wrt=[P_i, Q_j]) | |
train = theano.function(inputs=[i, j, x], | |
givens=[(P_i, P[i, :]), (Q_j, Q[:, j])], | |
updates=[(P, T.inc_subtensor(P[i, :], -gp * alpha)), | |
(Q, T.inc_subtensor(Q[:, j], -gq * alpha))]) | |
for _ in xrange(steps): | |
for (row, col), val in np.ndenumerate(D): | |
if not getmask(D)[row, col]: | |
train(row, col, val) | |
return P.get_value(), Q.get_value() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment